期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. SlSOM inhibits seed germination by regulating the expression of ABA/GA metabolic genes and SlABI5 in Solanum lycopersicum
SUN Xiao-chun, GAO Yong-feng, ZHANG Ning, LI Hui-rong, YANG Shu-zhang, LIU Yong-sheng
Journal of Integrative Agriculture    2015, 14 (2): 326-336.   DOI: 10.1016/S2095-3119(14)60859-5
摘要1815)      PDF    收藏
SOM encodes a nucleus-localized CCCH-type zinc finger protein and negatively regulates seed germination in Arabidopsis thaliana. We have previously demonstrated that ectopic expression of SlABI3, an important transcription factor in abscisic acid (ABA) signaling pathway, resulted in alteration of SlSOM expression patterns in both leaf and seed of tomato. In this study, we aimed to elucidate the function of tomato SlSOM in regarding to seed germination and seedling development. Here, we constructed SlSOM over-expression vector pBI121-SOM driven by CaMV 35S promoter, and the recombinant plasmid was incorporated into wild-type tomato by the method of Agrobacterium tumefaciens-mediated transformation. The result showed that over-expression of SlSOM conferred enhanced responses to exogenous ABA application during seed germination and seedling development. In addition, ectopic expression of SlSOM resulted in the alteration of expression level of ABA/GA (gibberellins) metabolic genes, such as SlABA1, SlCYP707A1, SlGA3ox2, and SlGA2ox4, in both leaf and seed. The ABA anabolic gene SlABA1 and the GA catabolic gene SlGA2ox4 were up-regulated while the ABA catabolic gene SlCYP707A1 and the GA anabolic gene SlGA3ox2 were down-regulated. Compared to wild type, the expression level of SlABI5 was increased by about 40–50% in transgenic seeds while adding exogenous ABA treatment. These results support the notion that SlSOM inhibits seed germination by regulating ABA/GA metabolic genes and SlABI5 expression in Solanum lycopersicum.
参考文献 | 相关文章 | 多维度评价