期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. The identification of presence/absence variants associated with the apparent differences of growth period structures between cultivated and wild soybeans
LI Yan-fei, HONG Hui-long, LI Ying-hui, MA Yan-song, CHANG Ru-zhen, QIU Li-juan
Journal of Integrative Agriculture    2016, 15 (2): 262-270.   DOI: 10.1016/S2095-3119(15)61048-6
摘要1832)      PDF    收藏
The cultivated soybean (Glycine max (L.) Merr.) was distinguished from its wild progenitor Glycine soja Sieb. & Zucc. in growth period structure, by a shorter vegetative phase (V), a prolonged reproductive phase (R) and hence a larger R/V ratio. However, the genetic basis of the domestication of soybean from wild materials is unclear. Here, a panel of 123 cultivated and 97 wild accessions were genotyped using a set of 24 presence/absence variants (PAVs) while at the same time the materials were phenotyped with respect to flowering and maturity times at two trial sites located at very different latitudes. The major result of this study showed that variation at PAVs is informative for assessing patterns of genetic diversity in Glycine spp. The genotyping was largely consistent with the taxonomic status, although a few accessions were intermediate between the two major clades identified. Allelic diversity was much higher in the wild germplasm than in the cultivated materials. A significant domestication signal was detected at 11 of the PAVs at 0.01 level. In particular, this study has provided information for revealing the genetic basis of photoperiodism which was a prominent feature for the domestication of soybean. A significant marker-trait association with R/V ratio was detected at 14 of the PAVs, but stripping out population structure reduced this to three. These results will provide markers information for further finding of R/V related genes that can help to understand the domestication process and introgress novel genes in wild soybean to broaden the genetic base of modern soybean cultivars.
参考文献 | 相关文章 | 多维度评价
2. Genetic diversity center of cultivated soybean (Glycine max) in China - New insight and evidence for the diversity center of Chinese cultivated soybean
WANG Li-xia, LIN Fan-yun, LI Lin-hai, LI Wei, YAN Zhe, LUAN Wei-jiang, PIAO Ri-hua, GUAN Yuan, NING Xue-cheng, ZHU Li, MA Yan-song, DONG Zhi-min, ZHANG Hai-yan, ZHANG Yue-qiang, GUAN Rongxia, ......
Journal of Integrative Agriculture    2016, 15 (11): 2481-2487.   DOI: 10.1016/S2095-3119(15)61289-8
摘要1466)      PDF    收藏
    Information on the center of genetic diversity of soybean (Glycine max) will be helpful not only for designing efficient strategies for breeding programs, but also for understanding the domestication and origin of this species. Here, we describe an analysis of genetic diversity based on simple-sequence repeat (SSR) variations within a core collection of 2 111 accessions of Chinese soybean landraces. Prior to the diversity assessment, the geographic origin of each accession was mapped. The map was then divided into grids each 2.5° in latitude and 5° in longitude. We found two regions that had higher number of alleles (NA) and greater polymorphic information content (PIC) values than the others. These regions are adjacently located within grid position of 30°–35°N×105°–110°E, which includes the valley of the middle and lower reaches of the Wei River, and the valley of the upper reaches of the Hanjiang River. It was also observed that in many regions, genetic diversity decreased with the increase in distance from the center. Another region, in northern Hebei Province (115°–120°E×40°–42.5°N), was observed having higher diversity than any surrounding regions, indicating that this is a sub-center of soybean diversity. Based on the presented results, the domestication and origin of soybean are also discussed.
参考文献 | 相关文章 | 多维度评价