期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Investigation on the co-infections of Toxoplasma gondii with PRRSV, CSFV or PCV-2 in swine in part of China
Wang Shuai, ZHang Meng, LIU Xin-chao, LIn Tao, Yang Han-chun, YUan Shi-shan, ZHao guang-wei, Ia Hassan, Yan Ruo-feng, Song Xiao-kai, XU Li-xin, LI Xiang-rui
Journal of Integrative Agriculture    2015, 14 (9): 1838-1844.   DOI: 10.1016/S2095-3119(15)61044-9
摘要1515)      PDF    收藏
The objective of the present investigation was to estimate the prevalence of Toxoplasma gondii infection and co-infection with porcine reproductive and respiratory syndrome virus (PRRSV), classical swine fever virus (CSFV) and porcine circovirus type 2 (PCV-2) in pigs in China. A total of 372 tissues or serum samples collected from pigs distributed in 9 provinces/ municipalities of China during the period from February 2011 to November 2012 were assayed for T. gondii antigens and antibodies using enzyme linked immunosorbent assay (ELISA) technique, while the PCR was designed for the detection of the PRRSV, CSFV and PCV-2, respectively. The total positive rate of T. gondii, PRSSV, CSFV and PCV-2 was 9.14% (34/372), 50.00% (186/372), 37.10% (138/372) and 3.23% (12/372), respectively. Among the 34 T. gondii positive samples, 26 samples were simultaneously infected with T. gondii and viruses, while the remaining eight samples were infected with T. gondii alone. In addition, the co-infection rate of T. gondii with PRSSV, T. gondii with PRSSV and CSFV, T. gondii with PRSSV and PCV-2, T. gondii with CSFV and PCV-2, T. gondii with PRSSV, CSFV and PCV-2 was 1.61% (6/372), 4.03% (15/372), 0.27% (1/372), 0.27% (1/372) and 0.81% (3/372), respectively. The results of the present survey revealed that PRRSV and CSFV were the common pathogens co-existing with porcine toxoplasmosis in China, and both of them could increase the chances of T. gondii infection in pig. This is the first report of T. gondii co-infections with viruses in pigs. It is very important to understand the interactions of parasite and virus, and can be used as reference data for the control and prevention of co-infections of T. gondii and viruses in pigs.
参考文献 | 相关文章 | 多维度评价
2. Interactions of water and nitrogen addition on soil microbial community composition and functional diversity depending on the inter-annual precipitation in a Chinese steppe
SUN Liang-jie, QI Yu-chun, DONG Yun-she, HE Ya-ting, PENG Qin, LIU Xin-chao, JIA Jun-qiang, GUO Shu-fang, CAO Cong-cong
Journal of Integrative Agriculture    2015, 14 (4): 788-799.   DOI: 10.1016/S2095-3119(14)60773-5
摘要2021)      PDF    收藏
Water and nitrogen are primary limiting factors in semiarid grassland ecosystems. Our knowledge is still poor regarding the interactive effects of water and N addition on soil microbial communities, although this information is crucial to reveal the mechanisms of the terrestrial ecosystem response to global changes. We addressed this problem by conducting a field experiment with a 15% surplus of the average rainfall under three levels of N addition (50, 100, and 200 kg N ha–1 yr–1) in two consecutive years in Inner Mongolia, China. Microbial community composition and functional diversity were analyzed based on phospholipid fatty acids (PLFA) and BIOLOG techniques, respectively. The results showed that water addition did not affect the soil microbial community composition, but much more yearly precipitation generally decreased the PLFA concentration, which implied a fast response of soil microbes to changes of water condition. Soil fungi was depressed only by N addition at the high level (200 kg N ha–1 yr–1) and without hydrologic leaching, while Gram-negative bacteria was suppressed probably by plant competition at high level N addition but with hydrologic leaching. The study found unilateral positive/negative interactions between water and N addition in affecting soil microbial community, however, climate condition (precipitation) could be a significant factor in disturbing the interactions. This study highlighted that: (1) The sustained effect of pulsed water addition was minimal on the soil microbial community composition but significant on the microbial community functional diversity and (2) the complex interaction between water and N addition on soil microbial community related to the inter-annual variation of the climate and plant response.
参考文献 | 相关文章 | 多维度评价