期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Genetic parameter estimation and genome-wide association study (GWAS) of red blood cell count at three stages in a Duroc×Erhualian pig population
NAN Jiu-hong, YIN Li-lin, TANG Zhen-shuang, CHEN Jian-hai, ZHANG Jie, WANG Hai-yan, DU Xiao-yong, LIU Xiang-dong
Journal of Integrative Agriculture    2020, 19 (3): 793-799.   DOI: 10.1016/S2095-3119(19)62773-5
摘要135)      PDF    收藏
Red blood cells play an essential role in the immune system.  Moreover, red blood cell count (RBC) is an important clinical indicator of various diseases, including anemia, type 2 diabetes and the metabolic syndrome.  Thus, it is necessary to reveal the genetic mechanism of RBC for animal disease resistance breeding.  However, quite a few studies had focused on porcine RBC, especially at different stages.  Thus, studies on porcine RBC at different stages are needed for disease resistant breeding.  In this study, the porcine RBC of 20-, 33-, and 80-day old were measured, and genetic parameter estimation and genome-wide association study (GWAS) were both performed.  As a result, the heritability was about 0.6 at the early stages, much higher than that at 80 days.  Nine novel genome wide significant single nucleotide polymorphisms (SNPs), located at Sus scrofa chromosome (SSC)3, 4, 8, 9, 10 and 15, respectively, were identified.  Further, TGFβ2, TMCC2 and PPP1R15B genes were identified as important candidate genes of porcine red blood cell count.  So different SNPs and candidate genes were found significantly associated with porcine RBC at different stages, suggesting that different genes might play key roles on porcine RBC at different stages.  Overall, new evidences were offered in this study for the genetic bases of animal RBC, and that the SNPs and candidate genes would be useful for disease resistant breeding of pig.
参考文献 | 相关文章 | 多维度评价
2. Cytological Behavior of Hybridization Barriers Between Oryza sativa and Oryza officinalis
FU Xue-lin, LU Yong-gen, LIU Xiang-dong, LI Jin-quan , ZHAO Xing-juan
Journal of Integrative Agriculture    2011, 10 (10): 1489-1500.   DOI: 10.1016/S1671-2927(11)60143-0
摘要1640)      PDF    收藏
Oryza officinalis is one of the important wild species in the tertiary gene pool of Oryza sativa. It has a number of elite genes for rice breeding in resistance or tolerance. However, breeding barriers are so serious that the gene transfer is much difficult by sexual cross method between O. sativa and O. officinalis. Characteristics of the breeding barriers were systemically studied in this paper. When both the diploid (AA, 2n=2x=24) and autotetraploid (AAAA, 2n=4x=48) cultivated rice were crossed as maternal parents with O. officinalis (CC, 2n=2x=24), none F1 hybrid seeds were obtained. The young hybrid ovaries aborted at 13-16 d after pollinations (DAP). By rescuing hybrid embryos, in vitro F1 plantlets were obtained in 2x×2x combinations with the crossabilities lower than 0.5%. Lower rates of double-fertilization and abnormal development of hybrid embryo and endosperm were mainly observed in both combinations of 2x×2x and 4x×2x. Free endosperm nuclei in hybrid degenerated early at 1 DAP in a large scale. Almost no normal endosperm cells formed at 3 DAP. Development of a lot of embryos ceased at globular- or pear-shaped stage as well as some degenerated gradually. The hybrid plantlets were both male and female sterility. Due to the abnormal development, a diversity of abnormal embryo sacs formed in hybrids, and hybrid pollen grains were typically abortive. It showed that conflicts of genome A and C in hybrid induced abnormal meioses of meiocytes.
参考文献 | 相关文章 | 多维度评价