期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. JIA-2021-1422 大豆短叶柄种质M657的耐密、抗倒伏性鉴定及密度对产量相关表型的影响
GAO Hua-wei, YANG Meng-yuan, YAN Long, HU Xian-zhong, HONG Hui-long, ZHANG Xiang, SUN Ru-jian, WANG Hao-rang, WANG Xiao-bo, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan
Journal of Integrative Agriculture    2023, 22 (2): 434-446.   DOI: 10.1016/j.jia.2022.08.047
摘要257)      PDF    收藏
高密度种植可以提高大豆产量,但通过改良株高及叶柄性状以选育株型紧凑、抗倒伏性优异的高产品种是提高产量的重要途径。2017-2018年,我们比较了黄淮地区四个地点的短叶柄种质M657与三个对照品种产量相关性状、抗倒伏性和叶柄相关表型间的关系。结果表明,M657对高种植密度和倒伏性表现出极高且稳定的耐受性,尤其在最高密度8×105株ha-1下表现依然优异。回归分析表明,较短的叶柄长度与抗倒伏性的增加显著相关。产量分析表明,M657在较高密度下获得了较高的产量,尤其在黄淮北片地区。在与地点、密度相关的倒伏性和产量方面,不同品种对株距、行间距的反应存在显著差异。植株的倒伏性与种植密度、株高、叶柄长度和有效分枝数显著正相关,与茎粗、单株粒数、单株粒重呈显著负相关。在当前大豆品种种植密度的基础上,适当增加种植密度有助于黄淮地区大豆的产量提高。本研究为在高密度种植系统中引入适宜高产的紧凑株型性状、建立黄淮地区大豆高产模式提供了极有价值的新种质资源。
参考文献 | 相关文章 | 多维度评价
2. JIA-2020-2489 大豆紧凑株型突变体M657的叶柄表型鉴定及短叶柄新品系培育
GAO Hua-wei, SUN Ru-jian, YANG Meng-yuan, YAN Long, HU Xian-zhong, FU Guang-hui, HONG Hui-long, GUO Bing-fu, ZHANG Xiang, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan
Journal of Integrative Agriculture    2022, 21 (9): 2508-2520.   DOI: 10.1016/j.jia.2022.07.004
摘要307)      PDF    收藏

本研究建立了叶柄长度检测方法,并对EMS诱变冀黄13获得的高光效新种质M657为材料,于2017-2018年度在北方、黄淮、南方共7个地点进行表型鉴定。与冀黄13相比,M657在北方春、黄淮海夏及南方夏种植时矮化、叶柄短表型稳定,M657株高与叶柄长度显著降低,有效分枝数增加,生育期延长2-7 d,单株粒重、百粒重下降;4个短叶柄新品系的选育为大豆株型改良提供了重要的亲本种质,同时证明了利用矮杆短叶柄新种质M657理想株型为耐密、高产大豆新品种的培育的可行性


参考文献 | 相关文章 | 多维度评价
3. Establishment and application of an accurate identification method for fragrant soybeans
ZHANG Yong-fang, ZHANG Chun-yan, ZHANG Bo, YIN Man, HONG Hui-long, YU Li-li, GAO Hua-wei, GU Yong-zhe, LIU Zhang-xiong, LI Fu-heng, QIU Li-juan
Journal of Integrative Agriculture    2021, 20 (5): 1193-1203.   DOI: 10.1016/S2095-3119(20)63328-7
摘要135)      PDF    收藏

为筛选大豆香味种质,建立大豆叶片中香味特征化合物2-乙酰基-1-吡咯啉(2-acetyl-l-Pyrroline,2AP)的鉴定方法。本研究通过单因素及三因素四水平(L9 (34)的正交试验,以峰形、总峰面积及检测样品时间为考察指标,建立了利用气质联用仪(GC-MS)快速检测香味的方法,明确了仪器运行最佳参数包括:柱温70℃,进样口温度180℃,以及样品最优萃取时间条件(酒精含量1ml、NaCl含量0.1g,超声时间10min,萃取时间为1h)。该检测方法重复性好、简单快速、样本试剂消耗少,可精准快速测定2AP含量。利用该方法对不同地理来源的101个大豆基因型进行了分析筛选。结果表明, 2-AP平均含量为0.29ppm,变幅为0.094ppm到1.816ppm,遗传多样性指数为0.54。可被划分为3个等级,其中,1级香型大豆有7份,包括中龙608、黑农88、哈13-2958、红面豆、黑农82、黄毛豆、吉育21。本研究建立的方法及筛选的优异种质为大豆香味育种和基因发掘提供了技术和材料支撑。


参考文献 | 相关文章 | 多维度评价
4. Development and identification of glyphosate-tolerant transgenic soybean via direct selection with glyphosate
GUO Bing-fu, HONG Hui-long, HAN Jia-nan, ZHANG Li-juan, LIU Zhang-xiong, GUO Yong, QIU Li-juan
Journal of Integrative Agriculture    2020, 19 (5): 1186-1196.   DOI: 10.1016/S2095-3119(19)62747-4
摘要178)      PDF    收藏
Glyphosate-tolerant soybean is the most widely planted genetically modified crop worldwide.   However, soybean remains recalcitrant to routine transformation because of the low infection efficiency of Agrobacterium to soybean and lack of useful selectable markers.  In this study, several Agrobacterium strains and cell densities were compared by transient expression of the GUS gene.  The results showed that Agrobacterium strain Ag10 at cell densities of OD600 of 0.6–0.9 yielded the highest infection efficiency in Agrobacterium-mediated soybean cotyledonary node transformation system.  Meanwhile, a simple and rapid method was developed for identification of glyphosate tolerance in putative T0 transgenic plants, consisting of spotting plantlets with 1 µL Roundup®.  The whole cycle of genetic transformation could be shortened to about 3 mon by highly efficient selection with glyphosate during the transformation process and application of the spot assay in putative T0 transgenic plantlets.  The transformation frequency ranged from 2.9 to 5.6%.  This study provides an improved protocol for development and identification of glyphosate-tolerant transgenic soybeans.
参考文献 | 相关文章 | 多维度评价
5. The identification of presence/absence variants associated with the apparent differences of growth period structures between cultivated and wild soybeans
LI Yan-fei, HONG Hui-long, LI Ying-hui, MA Yan-song, CHANG Ru-zhen, QIU Li-juan
Journal of Integrative Agriculture    2016, 15 (2): 262-270.   DOI: 10.1016/S2095-3119(15)61048-6
摘要1832)      PDF    收藏
The cultivated soybean (Glycine max (L.) Merr.) was distinguished from its wild progenitor Glycine soja Sieb. & Zucc. in growth period structure, by a shorter vegetative phase (V), a prolonged reproductive phase (R) and hence a larger R/V ratio. However, the genetic basis of the domestication of soybean from wild materials is unclear. Here, a panel of 123 cultivated and 97 wild accessions were genotyped using a set of 24 presence/absence variants (PAVs) while at the same time the materials were phenotyped with respect to flowering and maturity times at two trial sites located at very different latitudes. The major result of this study showed that variation at PAVs is informative for assessing patterns of genetic diversity in Glycine spp. The genotyping was largely consistent with the taxonomic status, although a few accessions were intermediate between the two major clades identified. Allelic diversity was much higher in the wild germplasm than in the cultivated materials. A significant domestication signal was detected at 11 of the PAVs at 0.01 level. In particular, this study has provided information for revealing the genetic basis of photoperiodism which was a prominent feature for the domestication of soybean. A significant marker-trait association with R/V ratio was detected at 14 of the PAVs, but stripping out population structure reduced this to three. These results will provide markers information for further finding of R/V related genes that can help to understand the domestication process and introgress novel genes in wild soybean to broaden the genetic base of modern soybean cultivars.
参考文献 | 相关文章 | 多维度评价
6. Co-treatment with surfactant and sonication significantly improves Agrobacterium-mediated resistant bud formation and transient expression efficiency in soybean
GUO Bing-fu, GUO Yong, WANG Jun, ZHANG Li-juan, JIN Long-guo, HONG Hui-long, CHANG, Ru-zheng, QIU Li-juan
Journal of Integrative Agriculture    2015, 14 (7): 1242-1250.   DOI: 10.1016/S2095-3119(14)60907-2
摘要1969)      PDF    收藏
Soybean is a widely planted genetically modified crop around the world. However, it is still one of the most recalcitrant crops for genetic transformation due to the difficulty of regeneration via organogenesis and some factors that affect the transformation efficiency. The percentages of resistant bud formation and transient expression efficiency are important indexes reflecting the regeneration and transformation efficiency of soybean. In this study, the percentages of resistant bud formation and transient expression of β-glucuronidase (GUS) were compared after treatment with sonication or surfactant and co-treatment with both. The results showed that treatment with either sonication or surfactant increased the percentage of resistant bud formation and transient expression efficiency. The highest percentages were acquired and significantly improved when cotyledon node explants were co-treated with sonication for 2 s and surfactant at 0.02% (v:v) using two different soybean genotypes, Jack and Zhonghuang 10. The improved transformation efficiency of this combination was also evaluated by development of herbicide-tolerant soybeans with transformation efficiency at 2.5–5.7% for different genotypes, which was significantly higher than traditional cotyledonary node method in this study. These results suggested that co-treatment with surfactant and sonication significantly improved the percentages of resistance bud formation, transient expression efficiency and stable transformation efficiency in soybean.
参考文献 | 相关文章 | 多维度评价