期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Molecular characterization, expression and function analysis of eukaryotic translation initiation factor (eIF1A) in Mangifera indica
LI Li-shu, LUO Cong, AN Zhen-yu, LIU Zhao-liang, DONG Long, YU Hai-xia, HE Xin-hua
Journal of Integrative Agriculture    2019, 18 (11): 2505-2513.   DOI: 10.1016/S2095-3119(19)62774-7
摘要85)      PDF    收藏
Eukaryotic translation initiation factor 1A (eIF1A) functions as an important regulatory factor of protein synthesis and plays a crucial role in responses to abiotic stresses in plants.  However, little is known about the eIF1A gene involved in fruit development and stress response of mango.  In this study, the MieIF1A-b gene was isolated from Mangifera indica, and contains a 435-bp open reading frame, which encodes a putative protein of 144 amino acids (GenBank accession number: KP676599).  The predicted MieIF1A-b protein had a molecular weight of 16.39 kDa with a pI of 4.6.  Sequence homology analysis showed that MieIF1A-b shared high homology with Elaeis guineensis, Manihot esculenta, and Populus trichocarpa, with 96 and 95% identity, respectively.  Quantitative reverse transcriptative PCR (qRT-PCR) analyses indicated that MieIF1A-b was expressed in all tested tissues, and had the highest expression level in fruit 80 d after flowering. The expression of MieIF1A-b was obviously regulated by NaCl and H2O2 treatments in leaves.  Functional analysis indicated that the overexpression of MieIF1A-b in transgenic Arabidopsis thaliana enhanced the growth, phenotype and salinity tolerance compared with wild-type (WT) plants.  The results indicated that MieIF1A-b may be correlated with the control of fruit development and salt adaptation, and it was a candidate gene for abiotic stress in mango.
参考文献 | 相关文章 | 多维度评价
2. Rapid gene expression change in a novel synthesized allopolyploid population of cultivated peanut×Arachis doigoi cross by cDNA-SCoT and HFO-TAG technique
HE Liang-qiong1, TANG Rong-hua1, JIANG Jing1, XIONG Fa-qian1, HUANG Zhi-peng1, WU Hai-ning1, GAO Zhong-kui1, ZHONG Rui-chun1, HE Xin-hua2, HAN Zhu-qiang1
Journal of Integrative Agriculture    2017, 16 (05): 1093-1102.   DOI: 10.1016/S2095-3119(16)61462-4
摘要964)      PDF    收藏
Allopolyploidy has played an important role in plant evolution and heterosis.  Recent studies indicate that the process of wide hybridization and (or) polyploidization may induce rapid and extensive genetic and epigenetic changes in some plant species.  To better understand the allopolyploidy evolutionism and the genetic mechanism of Arachis interspecific hybridization, this study was conducted to monitor the gene expression variation by cDNA start codon targeted polymorphism (cDNA-SCoT) and cDNA high-frequency oligonucleotide-targeting active gene (cDNA-HFO-TAG) techniques, from the hybrids (F1) and newly synthesized allopolyploid generations (S0-S3) between tetraploid cultivated peanut Zhongkaihua 4 with diploid wild one Arachis doigoi. Rapid and considerable gene expression variations began as early as in the F1 hybrid or immediately after chromosome doubling.  Three types of gene expression changes were observed, including complete silence (gene from progenitors was not expressed in all progenies), incomplete silence (gene expressed only in some progenies) and new genes activation.  Those silent genes mainly involved in RNA transcription, metabolism, disease resistance, signal transduction and unknown functions.  The activated genes with known function were almost retroelements by cDNA-SCoT technique and all metabolisms by cDNA-HFO-TAG.  These findings indicated that interspecific hybridization and ploidy change affected gene expression via genetic and epigenetic alterations immediately upon allopolyploid formation, and some obtained transcripts derived fragments (TDFs) probably could be used in the research of molecular mechanism of Arachis allopolyploidization which contribute to thwe genetic diploidization of newly formed allopolyploids.  Our research is valuable for understanding of peanut evolution and improving the utilization of putative and beneficial genes from the wild peanut.
参考文献 | 相关文章 | 多维度评价
3. Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain
LI Hui, FENG Wen-ting, HE Xin-hua, ZHU Ping, GAO Hong-jun, SUN Nan, XU Ming-gang
Journal of Integrative Agriculture    2017, 16 (04): 937-946.   DOI: 10.1016/S2095-3119(16)61559-9
摘要871)      PDF    收藏
The combined use of chemical and organic fertilizers is considered a good method to sustain high crop yield and enhance soil organic carbon (SOC), but it is still unclear when and to what extent chemical fertilizers could be replaced by organic fertilizers.  We selected a long-term soil fertility experiment in Gongzhuling, Northeast China Plain to examine the temporal dynamics of crop yield and SOC in response to chemical nitrogen, phosphorus, and potassium (NPK) fertilizers and manure, applied both individually and in combination, over the course of three decades (1980–2010).  We aimed to test 1) which fertilizer application is the best for increasing both maize yield and SOC in this region, and 2) whether chemical fertilizers can be replaced by manure to maintain high maize yield and enhance SOC, and if so, when this replacement should be implemented.  We observed that NPK fertilizers induced a considerable increase in maize yield in the first 12 years after the initiation of the experiment, but manure addition did not.  In the following years, the addition of both NPK fertilizers and manure led to an increase in maize yield.  SOC increased considerably in treatments with manure but remained the same or even declined with NPK treatments.  The increase in maize yield induced by NPK fertilizers alone declined greatly with increasing SOC, whereas the combination of NPK and manure resulted in high maize yield and a remarkable improvement in SOC stock.  Based on these results we suggested that NPK fertilizers could be at least partially replaced by manure to sustain high maize yield after SOC stock has reached 41.96 Mg C ha–1 in the Northeast China Plain and highly recommend the combined application of chemical fertilizers and manure (i.e., 60 Mg ha–1).
参考文献 | 相关文章 | 多维度评价
4. Soil Organic Carbon Accumulation Increases Percentage of Soil Olsen-P to Total P at Two 15-Year Mono-Cropping Systems in Northern China
SHEN Pu, HE Xin-hua, XU Ming-gang, ZHANG Hui-min, PENG Chang, GAO Hong-jun, LIU
Journal of Integrative Agriculture    2014, 13 (3): 597-603.   DOI: 10.1016/S2095-3119(13)60717-0
摘要1599)      PDF    收藏
Soil organic carbon (SOC) and soil Olsen-P are key soil fertility indexes but information on their relationships is limited particularly under long-term fertilization. We investigated the relationships between SOC and the percentage of soil Olsen-P to total P (PSOPTP) under six different 15-yr (1990-2004) long-term fertilizations at two cropping systems in northern China. These fertilization treatments were (1) unfertilized control (control); (2) chemical nitrogen (N); (3) N plus chemical P (NP); (4) NP plus chemical potassium (NPK); (5) NPK plus animal manure (NPKM) and (6) high NPKM (hNPKM). Compared with their initial values in 1989 at both sites, during the 11th to 15th fertilization years annual mean SOC contents were significantly increased by 39.4-47.0% and 58.9-93.9% at Gongzhuling, Jilin Province, and Urumqi, Xinjiang, China, under the two NPKM fertilizations, respectively, while no significant changes under the no-P or chemical P fertilization. During the 11th to 15th fertilization years, annual mean PSOPTP was respectively increased by 2.6-4.2 and 5.8-14.1 times over the initial values under the two chemical P fertilizations and the two NPKM fertilizations, but was unchanged in their initial levels under the two no-P fertilizations at both sites. Over the 15-yr long-term fertilization SOC significantly positively correlated with PSOPTP (r2=0.55-0.79, P<0.01). We concluded that the combination of chemical P plus manure is an effective way to promote SOC accumulation and the percentage of soil Olsen-P to total P at the two mono-cropping system sites in northern China.
参考文献 | 相关文章 | 多维度评价
5. Nitrogen Use Efficiency as Affected by Phosphorus and Potassium in Long-Term Rice and Wheat Experiments
DUAN Ying-hua, SHI Xiao-jun, LI Shuang-lai, SUN Xi-fa , HE Xin-hua
Journal of Integrative Agriculture    2014, 13 (3): 588-596.   DOI: 10.1016/S2095-3119(13)60716-9
摘要1801)      PDF    收藏
Improving nitrogen use efficiency (NUE) and decreasing N loss are critical to sustainable agriculture. The objective of this research was to investigate the effect of various fertilization regimes on yield, NUE, N agronomic efficiency (NAE) and N loss in long-term (16- or 24-yr) experiments carried out at three rice-wheat rotation sites (Chongqing, Suining and Wuchang) in subtropical China. Three treatments were examined: sole chemical N, N+phosphorus (NP), and NP+potassium (NPK) fertilizations. Grain yields at three sites were significantly increased by 9.3-81.6% (rice) and 54.5-93.8% (wheat) under NP compared with N alone, 1.7-9.8% (rice) and 0-17.6% (wheat) with NPK compared with NP. Compared to NP, NUE significantly increased for wheat at Chongqing (9.3%) and Wuchang (11.8%), but not at Suining, China. No changes in NUE were observed in rice between NP and NPK at all three sites. The rice-wheat rotation’s NAE was 3.3 kg kg-1 higher under NPK than under NP at Chongqing, while NAE was similar for NP and NPK at Suining and Wuchang. We estimated that an uptake increase of 1.0 kg N ha-1 would increase 40 kg rice and 30 kg wheat ha-1. Nitrogen loss/input ratios were ~60, ~40 or ~30% under N, NP or NPK at three sites, indicating significant decrease of N loss by P or PK additions. We attribute part of the increase in NUE soil N accumulation which significantly increased by 25-55 kg ha-1 yr-1 under NPK at three sites, whereas by 35 kg ha-1 yr-1 under NP at Chongqing only. This paper illustrates that apply P and K to wheat, and reduce K application to rice is an effective nutrient management strategy for both the NUE improvement and N losses reduction in China.
参考文献 | 相关文章 | 多维度评价
6. Basic Soil Productivity of Spring Maize in Black Soil Under Long-Term Fertilization Based on DSSAT Model
ZHA Yan, WU Xue-ping , HE Xin-hua, ZHANG Hui-min, GONG Fu-fei, CAI Dian-xiong, ZHU
Journal of Integrative Agriculture    2014, 13 (3): 577-587.   DOI: 10.1016/S2095-3119(13)60715-7
摘要1865)      PDF    收藏
Increasing basic farmland soil productivity has significance in reducing fertilizer application and maintaining high yield of crops. In this study, we defined that the basic soil productivity (BSP) is the production capacity of a farmland soil with its own physical and chemical properties for a specific crop season under local environment and field management. Based on 22-yr (1990-2011) long-term experimental data on black soil (Typic hapludoll) in Gongzhuling, Jilin Province, Northeast China, the decision support system for an agro-technology transfer (DSSAT)-CERES-Maize model was applied to simulate the yield by BSP of spring maize (Zea mays L.) to examine the effects of long-term fertilization on changes of BSP and explore the mechanisms of BSP increasing. Five treatments were examined: (1) no-fertilization control (control); (2) chemical nitrogen, phosphorus, and potassium (NPK); (3) NPK plus farmyard manure (NPKM); (4) 1.5 time of NPKM (1.5NPKM) and (5) NPK plus straw (NPKS). Results showed that after 22-yr fertilization, the yield by BSP of spring maize significantly increased 78.0, 101.2, and 69.4% under the NPKM, 1.5NPKM and NPKS, respectively, compared to the initial value (in 1992), but not significant under NPK (26.9% increase) and the control (8.9% decrease). The contribution percentage of BSP showed a significant rising trend (P<0.05) under 1.5NPKM. The average contribution percentage of BSP among fertilizations ranged from 74.4 to 84.7%, and ranked as 1.5NPKM>NPKM>NPK≈NPKS, indicating that organic manure combined with chemical fertilizers (1.5NPKM and NPKM) could more effectively increase BSP compared with the inorganic fertilizer application alone (NPK) in the black soil. This study showed that soil organic matter (SOM) was the key factor among various fertility factors that could affect BSP in the black soil, and total N, total P and/or available P also played important role in BSP increasing. Compared with the chemical fertilization, a balanced chemical plus manure or straw fertilization (NPKM or NPKS) not only increased the concentrations of soil nutrient, but also improved the soil physical properties, and structure and diversity of soil microbial population, resulting in an iincrease of BSP. We recommend that a balanced chemical plus manure or straw fertilization (NPKM or NPKS) should be the fertilization practices to enhance spring maize yield and improve BSP in the black soil of Northeast China.
参考文献 | 相关文章 | 多维度评价
7. Effects of Rice Straw and Its Biochar Addition on Soil Labile Carbon and Soil Organic Carbon
YIN Yun-feng, HE Xin-hua, GAO Ren, MA Hong-liang , YANG Yu-sheng
Journal of Integrative Agriculture    2014, 13 (3): 491-498.   DOI: 10.1016/S2095-3119(13)60704-2
摘要2276)      PDF    收藏
Whether the biochar amendment could affect soil organic matter (SOM) turnover and hence soil carbon (C) stock remains poorly understood. Effects of the addition of 13C-labelled rice straw or its pyrolysed biochar at 250 or 350°C to a sugarcane soil (Ferrosol) on soil labile C (dissolved organic C, DOC; microbial biomass C, MBC; and mineralizable C, MC) and soil organic C (SOC) were investigated after 112 d of laboratory incubation at 25°C. Four treatments were examined as (1) the control soil without amendment (Soil); (2) soil plus 13C-labelled rice straw (Soil+Straw); (3) soil plus 250°C biochar (Soil+B250) and (4) soil plus 350°C biochar (Soil+B350). Compared to un-pyrolysed straw, biochars generally had an increased aryl C, carboxyl C, C and nitrogen concentrations, a decreased O-alkyl C and C:N ratio, but similar alkyl C and d13C (1 742- 1 877 ‰). Among treatments, significant higher DOC, MBC and MC derived from the new C (straw or biochar) ranked as Soil+Straw>Soil+B250>Soil+B350, whilst significant higher SOC from the new C as Soil+B250>Soil+Straw≈Soil+B350. Compared to Soil, DOC and MBC derived from the native soil were decreased under straw or biochar addition, whilst MC from the native soil was increased under straw addition but decreased under biochar addition. Meanwhile, native SOC was similar among the treatments, irrespective of the straw or biochar addition. Compared to Soil, significant higher total DOC and total MBC were under Soil+Straw, but not under Soil+B250 and Soil+B350, whilst significant higher total MC and total SOC were under straw or biochar addition, except for MC under Soil+B350. Our results demonstrated that the application of biochar to soil may be an appropriate management practice for increasing soil C storage.
参考文献 | 相关文章 | 多维度评价
8. Soil pH Dynamics and Nitrogen Transformations Under Long-Term Chemical Fertilization in Four Typical Chinese Croplands
MENG Hong-qi, XU Ming-gang, Lü Jia-long, HE Xin-hua, LI Jian-wei, SHI Xiao-jun, PENG
Journal of Integrative Agriculture    2013, 12 (11): 2092-2102.   DOI: 10.1016/S2095-3119(13)60398-6
摘要1349)      PDF    收藏
Long-term fertilization experiment provides the platform for understanding the proton budgets in nitrogen transformations of agricultural ecosystems. We analyzed the historical (1990-2005) observations on four agricultural long-term experiments in China (Changping, Chongqing, Gongzhuling and Qiyang) under four different fertilizations, i.e., no-fertilizer (control), sole chemical nitrogen fertilizer (FN), sole chemical phosphorous and potassium fertilizers (FPK) and chemical nitrogen, phosphorous and potassium fertilizers (FNPK). The significant decline in topsoil pH was caused not only by chemical N fertilization (0.29 and 0.89 ΔpH at Gongzhuling and Qiyang, respectively) but also by chemical PK fertilization (0.59 ΔpH at Gongzhuling). The enhancement of available nutrients in the topsoil due to long-term direct nutrients supply with chemical fertilizers was in the descending order of available P (168-599%)>available K (16-189%)>available N (9-33%). The relative rate of soil pH decline was lower under long-term judicious chemical fertilization (-0.036-0.034 ΔpH yr-1) than that under long-term sole N or PK fertilization (0.016-0.086 ΔpH yr-1). Long-term judicious chemical fertilization with N, P and K elements decreases the nutritional limitation to normal crop growth, under which more N output was distributed in biomass removal rather than the loss via nitrate leaching. We concluded that the N distribution percentage of nitrate leaching to biomass removal might be a suitable indicator to the sensitivity of agricultural ecosystems to acid inputs.
参考文献 | 相关文章 | 多维度评价