期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Effects of dietary yeast β-glucan on nutrient digestibility and serum profiles in pre-ruminant Holstein calves
MA Tao, TU Yan, ZHANG Nai-feng, GUO Jiang-peng, DENG Kai-dong, ZHOU Yi, YUN Qiang, DIAO Qi-yu
Journal of Integrative Agriculture    2015, 14 (4): 749-757.   DOI: 10.1016/S2095-3119(14)60843-1
摘要2309)      PDF    收藏
This study aimed to investigate the effects of dietary supplementation of yeast β-glucan on the nutrient digestibility and serum profiles in pre-ruminant Holstein calves. Forty-two neonatal Holstein calves ((39.6±4.2) kg) were randomly allotted to six groups, and each was offered one of the following diets: a basal diet (control) or the basal diet supplemented with 25, 50, 75, 100 or 200 mg of yeast β-glucan kg–1 feed (dry matter basis). The basal diet consisted of a milk replacer and a starter feed. The trial lasted for 56 d. Two digestibility trials were conducted from d 14 to 20 and from d 42 to 48. Blood samples were collected on d 0, 14, 28 and 42 for serum profile analyses. On d 56, three calves from each group were slaughtered, and intestinal samples were collected to assess the villous height, crypt depth and mucosal thickness. Although feed intake was not affected by dietary treatment (P>0.05), the average daily gain (ADG) and gain-to-feed ratios were higher (P<0.05) for the calves fed 75 mg of yeast β-glucan kg–1 feed than those in the other groups. The supplementation of yeast β-glucan at 75 mg kg–1 feed increased the apparent digestibility of dry matter (DM), crude protein (CP), ether extract (EE), and phosphorus (P) (P<0.05) and the ratio of intestinal villous height to crypt depth (V/C) (P<0.05) when compared with the control group. No effects of yeast β-glucan on the serum concentrations of total protein (TP), albumin (ALB), serum urea nitrogen (SUN) and glucose (GLU) were observed (P>0.05). Compared with the control group, supplementation of yeast β-glucan decreased (P<0.05) the serum concentrations of triglycerides (TG) and total cholesterol (TC). The serum concentration of immunoglobulin G (IgG) and immunoglobulin M (IgM) increased quadratically (P<0.05), whereas the serum concentration of immunoglobulin A (IgA) was unaffected by dietary treatments (P>0.05). The supplementation of yeast β-glucan stimulated the enzymatic activity of alkaline phosphatase (ALP) (P<0.05) compared with the control group. The lysozyme (LYZ) concentration increased quadratically (P<0.05) with increasing yeast β-glucan levels. The results suggested that dietary supplementation of yeast β-glucan at 75 mg kg–1 feed improved nutrient digestibility, enhanced immunity by increasing the immunoglobulin concentration and stimulating ALP, and exerted no adverse effects on metabolism in pre-ruminant calves.
参考文献 | 相关文章 | 多维度评价
2. Immunoassay of chemical contaminants in milk: A review
XU Fei, REN Kang, YANG Yu-ze, GUO Jiang-peng, MA Guang-peng, LIU Yi-ming, LU Yong-qiang, LI Xiu-bo
Journal of Integrative Agriculture    2015, 14 (11): 2282-2295.   DOI: 10.1016/S2095-3119(15)61121-2
摘要2295)      PDF    收藏
The detection of chemical contaminants is critical to ensure dairy safety. These contaminants include veterinary medicines, antibiotics, pesticides, heavy metals, mycotoxins, and persistent organic pollutants (POPs). Immunoassays have recently been used to detect contaminants in milk because of their simple operation, high speed, and low cost. This article describes the latest developments in the most important component of immunoassays — antibodies, and then reviews the four major substrates used for immunoassays (i.e., microplates, membranes, gels, and chips) as well as their use in the detection of milk contaminants. The paper concludes with prospects for further applications of these immunoassays.
参考文献 | 相关文章 | 多维度评价