期刊
出版年
关键词
结果中检索
(((GONG Yi-qin[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
Molecular Characterization and Expression Profiles of Myrosinase Gene (RsMyr2) in Radish (Raphanus sativus L.)
PAN Yan1, XU Yuan-yuan1, ZHU Xian-wen2, LIU Zhe1, GONG Yi-qin1, XU Liang1, GONG Mao-yong1, and LIU Li-wang1
Journal of Integrative Agriculture 2014, 13 (
9
): 1877-1888. DOI:
10.1016/S2095-3119(13)60644-9
摘要
(
1298
)
PDF
可视化
收藏
Myrosinase is a defense-related enzyme and is capable of hydrolyzing glucosinolates into a variety of compounds, some of which are toxic to pathogens and herbivores. Many studies revealed that a number of important vegetables or oil crops contain the myrosinase-glucosinolate system. However, the related promoter and genomic DNA sequences as well as expression profiles of myrosinase gene remain largely unexplored in radish (Raphanus sativus). In this study, the 2 798 bp genomic DNA sequence, designated as RsMyr2, was isolated and analyzed in radish. The RsMyr2 consisting of 12 exons and 11 introns reflected the common gene structure of myrosinases. Using the genomic DNA walking approach, the 5´-flanking region upstream of RsMyr2 with length of 1 711 bp was successfully isolated. PLACE and PlantCARE analyses revealed that this upstream region could be the promoter of RsMyr2, which contained several basic cis-regulatory elements including TATA-box, CAAT-box and regulatory motifs responsive to defense and stresses. Furthermore, recombinant pET-RsMyr2 protein separated by SDS-PAGE was identified as myrosinase with mass spectrometry. Real-time PCR analysis showed differential expression profiles of RsMyr2 in leaf, stem and root at different developmental stages (e.g., higher expression in leaf at cotyledon stage and lower in flesh root at mature stage). Additionally, the RsMyr2 gene exhibited up-regulated expression when treated with abscisic acid (ABA), methyl jasmonate (MeJA) and hydrogen peroxide (H2O2), whereas it was down-regulated by wounding (WO) treatment. The findings indicated that the expression of RsMyr2 gene was differentially regulated by these stress treatments. These results could provide new insight into elucidating the molecular characterization and biological function of myrosinase in radish.
参考文献
|
相关文章
|
多维度评价
Select
2.
Identification and Molecular Mapping of the RsDmR Locus Conferring Resistance to Downy Mildew at Seedling Stage in Radish (Raphanus sativus L.)
XU Liang, JIANG Qiu-wei, WU Jian, WANG Yan, GONG Yi-qin, WANG Xian-li, Limera Cecilia , LIU Li-wang
Journal of Integrative Agriculture 2014, 13 (
11
): 2362-2369. DOI:
10.1016/S2095-3119(14)60792-9
摘要
(
1245
)
PDF
可视化
收藏
Downy mildew (DM), caused by the fungus Peronospora parasitica, is a destructive disease of radish (Raphanus sativus L.) worldwide. Host resistance has been considered as an attractive and environmentally friendly approach to control the disease. However, the genetic mechanisms of resistance in radish to the pathogen remain unknown. To determine the inheritance of resistance to DM, F1, F2 and BC1F1 populations derived from reciprocal crosses between a resistant line NAU-dhp08 and a susceptible line NAU-qtbjq-06 were evaluated for their responses to DM at seedling stage. All F1 hybrid plants showed high resistance to DM and maternal effect was not detected. The segregation for resistant to susceptible individuals statistically fitted a 3:1 ratio in two F2 populations (F2(SR) and F2(RS)), and 1:1 ratio in two BC1F1 populations, indicating that resistance to DM at seedling stage in radish was controlled by a single dominant locus designated as RsDmR. A total of 1 972 primer pairs (1036 SRAP, 628 RAPD, 126 RGA, 110 EST-SSR and 72 ISSR) were screened, and 36 were polymorphic between the resistant and susceptible bulks, and consequently used for genotyping individuals in the F2 population. Three markers (Em9/ga24370, NAUISSR826700 and Me7/em10400) linked to the RsDmR locus within a 10.0 cM distance were identified using bulked segregant analysis (BSA). The SRAP marker Em9/ga24370 was the most tightly linked one with a distance of 2.3 cM to RsDmR. These markers tightly linked to the RsDmR locus would facilitate marker-assisted selection and resistance gene pyramiding in radish breeding programs.
参考文献
|
相关文章
|
多维度评价