期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Lignin metabolism regulates lodging resistance of maize hybrids under varying planting density
LI Bin, GAO Fei, REN Bai-zhao, DONG Shu-ting, LIU Peng, ZHAO Bin, ZHANG Ji-wang
Journal of Integrative Agriculture    2021, 20 (8): 2077-2089.   DOI: 10.1016/S2095-3119(20)63346-9
摘要220)      PDF    收藏

夏玉米品种及其种植密度是影响玉米抗倒伏能力的主要因素。本试验从木质素代谢的角度来探究不同玉米品种的抗倒伏能力及其种植密度调控。研究结果表明,抗倒伏夏玉米品种登海605 (DH605)具有较低的重心和良好的茎秆形态特征,这是其抗倒伏能力显著高于浚单20(XD20)的原因之一。DH605的木质素积累量、木质素合成途径关键酶活性以及G、S和H型木质素单体含量均显著高于XD20。随着种植密度的增加,两种品种的茎秆机械强度、木质素积累量和木质素合成途径关键酶活性均显著降低,G型木质素单体含量呈现先减少后保持稳定的趋势,S型木质素单体含量呈下降趋势,H木质素型单体含量呈上升趋势。相关性分析表明,倒伏率与植株性状及木质素代谢显著相关。因此,抗倒伏能力强的玉米具有木质素积累量高、木质素合成途径关键酶活性高、S型单体含量高、重心低、茎穿刺强度高、皮质厚度高、维管束面积小等特点,同时,高种植密度降低了茎秆木质素的积累、酶活性和机械强度,进而导致倒伏率提高


参考文献 | 相关文章 | 多维度评价
2. Effects of urea mixed with nitrapyrin on leaf photosynthetic and senescence characteristics of summer maize (Zea mays L.) waterlogged in the field
REN Bai-zhao, HU Juan, ZHANG Ji-wang, DONG Shu-ting, LIU Peng, ZHAO Bin
Journal of Integrative Agriculture    2020, 19 (6): 1586-1595.   DOI: 10.1016/S2095-3119(19)62725-5
摘要113)      PDF    收藏
Waterlogging is one of the major abiotic stresses in agricultural crop production.  However, the application of 2-chloro-6-(trichloromethyl) pyridine (nitrapyrin) can effectually mitigate the losses of nitrogen efficiency and grain yield of summer maize induced by waterlogging.  In order to explore its role to alleviate waterlogging stress on leaf antioxidative system and photosynthetic characteristics of summer maize, a field experiment was executed to research effects of nitrapyrin application on leaf photosynthetic and senescent characteristics of waterlogged summer maize Denghai 605 (DH605) and Zhengdan 958 (ZD958).  Experimental treatments consisted of waterlogging treatment that was applying only urea (WL), waterlogging treatment that was applying urea mixing with nitrapyrin (WL-N), and no waterlogging treatment that was only applying urea (NWL).  Results showed that WL significantly decreased leaf area index (LAI), SPAD, photosynthetic rate (Pn), and protective enzyme activities, accelerated leaf aging, eventually led to a remarkable yield reduction by 38 and 42% for DH605 and ZD958, respectively, compared to NWL.  However, the application of nitrapyrin was useful for relieving waterlogging damages on leaf photosynthetic ability.  LAI, SPAD and Pn of WL-N for DH605 were 10, 19 and 12–24% higher, and for ZD958 were 12, 23 and 7–25% higher, compared to those of WL, respectively.  Moreover, application of nitrapyrin effectually relieved waterlogging losses on antioxidative enzyme activities.  Leaf superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities of WL-N were averagely increased by 24, 15 and 30%, respectively, while malondialdehyde (MDA) content was averagely decreased by 13%, compared to those of WL.  Visibly, nitrapyrin application could improve leaf photosynthetic characteristics and retard leaf aging induced by waterlogging, thereby leading to a yield increase of waterlogged maize.
 
参考文献 | 相关文章 | 多维度评价
3. Diurnal variation of gas exchange, chlorophyll fluorescence, and photosynthetic response of six parental lines of maize released in three eras
LI Cong-feng, DONG Shu-ting, LIU Rui-xian, REN Hong, DING Zai-song, ZHAO Ming
Journal of Integrative Agriculture    2019, 18 (12): 2732-2743.   DOI: 10.1016/S2095-3119(19)62693-6
摘要132)      PDF    收藏
Over the past seven decades, the grain yield of maize (Zea mays L.) has increased continuously in China, mostly due to hybridization innovations, particularly recent genetic improvements in photosynthesis.  In order to reveal photosynthetic characters of elite inbred lines in different ears, a field experiment was conducted at the North China Plain of Shandong Province in China.  Six parental lines of maize introduced in three eras (the 1960s, 1980s, and 2000s) were investigated diurnal variation of gas exchange, chlorophyll fluorescence, and photosynthetic response characteristic at the grain filling stage.  Compared to earlier parental lines, the 2000s parental lines always had higher net photosynthetic rate (Pn) throughout the day, especially at noon, and a mid-day depression in Pn did not occur in all hybrids parental lines.  Moreover, the stomatal conductance (Gs) and water use efficiency (WUE) of the 2000s’ lines showed higher value than those of the 1960s’ and 1980s’ lines.  The inbred lines differences in photosynthetic parameters were partly owing to their different quantum carboxylation efficiencies and light synthase activities.  Simultaneously, the 2000s parental lines exhibited lower light and CO2 compensation points, and their higher apparent quantum yield, and carboxylation efficiency.  These suggested that the modern parental lines required lower light intensity and less CO2 to maintain a relatively high photosynthetic capacity, substantially increasing leaf physical quality and stress resistance.  It provided crucial information of high photo-efficiency and stress-resistance breeding in maize.
参考文献 | 相关文章 | 多维度评价
4. Maize/peanut intercropping increases photosynthetic characteristics, 13C-photosynthate distribution, and grain yield of summer maize
LI Yan-hong, SHI De-yang, LI Guang-hao, ZHAO Bin, ZHANG Ji-wang, LIU Peng, REN Bai-zhao, DONG Shu-ting
Journal of Integrative Agriculture    2019, 18 (10): 2219-2229.   DOI: 10.1016/S2095-3119(19)62616-X
摘要141)      PDF    收藏
Intercropping is used widely by smallholder farmers in developing countries to increase land productivity and profitability.  We conducted a maize/peanut intercropping experiment in the 2015 and 2016 growing seasons in Shandong, China.  Treatments included sole maize (SM), sole peanut (SP), and an intercrop consisting of four rows of maize and six rows of peanut (IM and IP).  The results showed that the intercropping system had yield advantages based on the land equivalent ratio (LER) values of 1.15 and 1.16 in the two years, respectively.  Averaged over the two years, the yield of maize in the intercropping was increased by 61.05% compared to that in SM, while the pod yield of peanut was decreased by 31.80% compared to SP.  Maize was the superior competitor when intercropped with peanut, and its productivity dominated the yield of the intercropping system in our study.  The increased yield was due to a higher kernel number per ear (KNE).  Intercropping increased the light transmission ratio (LTR) of the ear layer in the maize canopy, the active photosynthetic duration (APD), and the harvest index (HI) compared to SM.  In addition, intercropping promoted the ratio of dry matter accumulation after silking and the distribution of 13C-photosynthates to grain compared to SM.  In conclusion, maize/peanut intercropping demonstrated the potential to improve the light condition of maize, achieving enhanced photosynthetic characteristics that improved female spike differentiation, reduced barrenness, and increased KNE.  Moreover, dry matter accumulation and 13C-photosynthates distribution to grain of intercropped maize were improved, and a higher grain yield was ultimately obtained.
参考文献 | 相关文章 | 多维度评价
5. Increased plant density and reduced N rate lead to more grain yield and higher resource utilization in summer maize
SHI De-yang, LI Yan-hong, ZHANG Ji-wang, LIU Peng, ZHAO Bin, DONG Shu-ting
Journal of Integrative Agriculture    2016, 15 (11): 2515-2528.   DOI: 10.1016/S2095-3119(16)61355-2
摘要2944)      PDF    收藏
      Planting at an optimum density and supplying adequate nitrogen (N) to achieve higher yields is a common practice in crop production, especially for maize (Zea mays L.); however, excessive N fertilizer supply in maize production results in reduced N use efficiency (NUE) and severe negative impacts on the environment. This research was conducted to determine the effects of increased plant density and reduced N rate on grain yield, total N uptake, NUE, leaf area index (LAI), intercepted photosynthetically active radiation (IPAR), and resource use efficiency in maize. Field experiments were conducted using a popular maize hybrid Zhengdan 958 (ZD958) under different combinations of plant densities and N rates to determine an effective approach for maize production with high yield and high resource use efficiency. Increasing plant density was clearly able to promote N absorption and LAI during the entire growth stage, which allowed high total N uptake and interception of radiation to achieve high dry matter accumulation (DMA), grain yield, NUE, and radiation use efficiency (RUE). However, with an increase in plant density, the demand of N increased along with grain yield. Increasing N rate can significantly increase the DMA, grain yield, LAI, IPAR, and RUE. However, this increase was non-linear and due to the input of too much N fertilizers, the efficiency of N use at NCK (320 kg ha–1) was low. An appropriate reduction in N rate can therefore lead to higher NUE despite a slight loss in grain production. Taking into account both the need for high grain yield and resource use efficiency, a 30% reduction in N supply, and an increase in plant density of 3 plants m–2, compared to LD (5.25 plants m–2), would lead to an optimal balance between yield and resource use efficiency.
参考文献 | 相关文章 | 多维度评价
6. Comparative proteomic analysis provides new insights into ear leaf senescence of summer maize (Zea mays L.) under fild condition
WEI Shan-shan, WANG Xiang-yu, LIU Peng, ZHANG Ji-wang, ZHAO Bin, DONG Shu-ting
Journal of Integrative Agriculture    2016, 15 (05): 1005-1016.   DOI: 10.1016/S2095-3119(15)61163-7
摘要1728)      PDF    收藏
As the most important organ in plant photosynthesis, the leaf plays an important role in plant growth and development. Leaf senescence is associated with fundamental changes in the proteome. To research the molecular mechanisms of leaf senescence, protein expression in senescing maize ear leaves grown under field conditions was analyzed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS). A total of 60 senescence-associated proteins were identified. The identified proteins are involved in many biological processes, especially energy, metabolism and protein synthesis. Several of the identified proteins have not been previously reported as senescence-associated, including glycine-rich RNA-binding protein.
参考文献 | 相关文章 | 多维度评价
7. Increased grain yield with improved photosynthetic characters in modern maize parental lines
LI Cong-feng, TAO Zhi-qiang, LIU Peng, ZHANG Ji-wang, ZHUANG Ke-zhang, DONG Shu-ting, ZHAO Ming
Journal of Integrative Agriculture    2015, 14 (9): 1735-1744.   DOI: 10.1016/S2095-3119(14)60959-X
摘要2193)      PDF    收藏
The grain yield of maize has increased continuously in past decades, largely through hybrid innovation, cultivation technology, and in particular, recent genetic improvements in photosynthesis. Elite inbred lines are crucial for innovating new germplasm. Here, we analyzed variations in grain yield and a series of eco-physiological photosynthetic traits after anthesis in sixteen parental lines of maize (Zea mays L.) released during three different eras (1960s, 1980s, 2000s). We found that grain yield and biomass significantly increased in the 2000s than those in the 1980s and 1960s. Leaf area, chlorophyll, and soluble protein content slowly decreased, and maintained a higher net photosynthesis rate (Pn) and improved stomatal conductance (Gs) after anthesis in the 2000s. In addition, the parental lines in the 2000s obtained higher actual photochemistry efficiency (ФPSII) and the maximum PSII photochemistry efficiency (Fv/Fm), which largely improved light partitioning and chlorophyll fluorescence characteristic, including higher photochemical and photosystem II (PSII) reaction center activity, lower thermal energy dissipation in antenna proteins. Meanwhile, more lamellae per granum within chloroplasts were observed in the parental lines of the 2000s, with a clear and complete chloroplast membrane, which will greatly help to improve photosynthetic capacity and energy efficiency of ear leaf in maize parental lines. It is concluded that grain yield increase in modern maize parental lines is mainly attributed to the improved chloroplast structure and more light energy catched for the photochemical reaction, thus having a better stay-green characteristic and stronger photosynthetic capacity after anthesis. Our direct physiological evaluation of these inbred lines provides important information for the further development of promising maize cultivars.
参考文献 | 相关文章 | 多维度评价
8. Nitrate leaching of winter wheat grown in lysimeters as affected by fertilizers and irrigation on the North China Plain
GU Li-min, LIU Tie-ning, ZHAO Jun, DONG Shu-ting, LIU Peng, ZHANG Ji-wang, ZHAO Bin
Journal of Integrative Agriculture    2015, 14 (2): 374-388.   DOI: 10.1016/S2095-3119(14)60747-4
摘要2577)      PDF    收藏
Proper application of nitrogen (N) fertilizers and irrigation management are important production practices that can reduce nitrate leaching into groundwater and improve the N use efficiency (NUE). A lysimeter/rain shelter facility was used to study effects of the rate of N fertilization, type of N fertilizer, and irrigation level on key aspects of winter wheat production over three growing seasons (response variables were nitrate transport, N leaching, and NUE). Results indicated that nitrate concentration in the soil profile and N leaching increased with the rate of N fertilization. At the end of the third season, nitrate concentration in the top 0–75 cm layer of soil was higher with manure treatment while urea treatments resulted in higher concentrations in the 100–200 cm layer. With normal irrigation, 3.4 to 15.3% of N from applied fertilizer was leached from the soil, yet no leaching occurred under a stress irrigation treatment. The manure treatment experienced less N leaching than the urea treatment in all cases except for the 180 kg N ha-1 rate in 2011–2012 (season 3). In terms of grain yield (GY), dry matter (DM) or NUE parameters, values for the manure treatment were lower than for the urea treatment in 2009–2010 (season 1), yet were otherwise higher for urea treatment in season 3. GY and crop nitrogen uptake (NU) were elevated when the rate of N fertilizer increased, while the NUE decreased; GY, DM, and NU increased with the amount of irrigation. Data indicated that reduced rates of N fertilization combined with increased manure application and proper irrigation management can lower nitrate levels in the subsoil and reduce potential N leaching into groundwater.
参考文献 | 相关文章 | 多维度评价
9. Studies on Methane Emissions from Pastoral Farming in New Zealand
LI Meng-meng, ZHANG Gui-guo, SUN Xue-zhao, DONG Shu-ting , Simone O Hoskin
Journal of Integrative Agriculture    2014, 13 (2): 365-377.   DOI: 10.1016/S2095-3119(13)60272-5
摘要1722)      PDF    收藏
The aim of this paper was to give a basic understanding of studies on methane emissions of New Zealand, as we know the agriculture of New Zealand is pastoral farming, most livestock animals are grazed in pasture, and quantities of methane were released from the digestive tract and animals excreta. In New Zealand some 50% greenhouse gases (GHG) sources are attributed to agriculture and one third is methane from livestock enteric formation. For many years, many researchers have been exploiting the techniques and methods to measure the emission of methane of New Zealand, further more studing the available options to alleviate the methane emissions. Their pioneering work and successful experiences including the determined methods and mitigation strategies are worth learning for scholars around the world. Some of their approaches were not only suitable for New Zealand grazed livestock, but for many other countries, even the animals are intensively bred in pen. The calorimeter/respiration chamber is the most exactly method in present, but it needs expensive equipments and skilled manipulators, so there are still some difficulty in applying this approach extensively in practice. Sulfur hexafluoride (SF6) trace technique is much adopted for grazed livestock evaluating the methane emission, though its veracity was doubted by some researchers, it is still a good option in present for studying the GHG emissions for grazing animals. By measuring the rumen volatile fatty acid (VFA) concentration to estimate the methane emission is a relatively simple approach, it is just only a rough evaluation, and it is unsuitable for exact study, but this method may be used in China for extensively raised ruminant. In present China, the ruminants are fed in an extensively managed state, the diversities of roughage and animals varieties caused difficult to exactly estimate the methane emission. So exploiting the available options is much important for constituting the exhaustive emission inventory. This review just outline some practical techniques of New Zealand, those maybe a good reference for researchers to carry out their studies in this field, after all New Zealand have been persisting many years and acquired great achievements in methane mitigation area.
参考文献 | 相关文章 | 多维度评价
10. Arsenic Distribution, Species, and Its Effect on Maize Growth Treated with Arsenate
CI Xiao-ke, LIU Hua-lin, HAO Yu-bo, LIU Peng, DONG Shu-ting
Journal of Integrative Agriculture    2012, 12 (3): 416-423.   DOI: 10.1016/S1671-2927(00)8559
摘要2238)      PDF    收藏
A pot experiment was conducted to investigate the effect of different arsenic (As) levels on maize (Zea mays L.) growth and As accumulation and species in different parts of maize plants, as a guideline for production of maize in As-polluted areas with the objective of preventing As from entering the food chain, and improving understanding of the mechanisms of effect of As on plant. Zhengdan 958 was grown at five As levels added to soil (0, 12.5, 25, 50, and 100 mg kg-1 As). As concentration in maize tissues increased in the order of grain<stalk<leaf<<root. The As concentration in maize grain exceeded the maximum permissible concentration of 0.7 mg kg-1 in China at levels of 50 and 100 mg kg-1. As species were presented in root, stalk, and grain, but organic As was the major As species identified in the grain. Maize plants were able to reduce arsenate to arsenite. Low As levels of 12.5 and 25 mg kg-1 improved maize growth and grain nutrition quality, while high levels of As 50 or 100 mg kg-1 inhibited them. Yield reduction at high As levels resulted mainly from reduced ear length, kernel number per row, and kernel weight.
参考文献 | 相关文章 | 多维度评价