[1]Bonman J M, Vergel D D T, Khin M M. 1986. Physiologicspecialization of Pyricularia oryzae in the Philippines. PlantDisease, 70, 767-769.[2]Choi W, Dean R A. 1997. The adenylate cyclase gene MAC1 ofMagnaporthe grisea controls appressorium formation andother aspects of growth and development. The Plant Cell, 9,1973-1983.[3]Jeon J, Park S Y, Chi M H, Choi J, Park J, Rho H S, Kim S, GohJ, Yoo S, Choi J, et al. 2007. Genome-wide functional analysisof pathogenicity genes in the rice blast fungus. NatureGenetics, 39, 561-565.[4]Kadotani N, Nakayashiki H, Tosa Y, Mayama S. 2003. RNAsilencing in the phytopathogenic fungus Magnaporthe oryzae.Molecular Plant-Microbe Interactions, 16, 769-766.[5]Lau G W, Hamer J E. 1996. Regulatory genes controlling MPG1expression and pathogenicity in the rice blast fungusMagnaporthe grisea. The Plant Cell, 8, 771-781.[6]Li Y, Yan X, Wang H, Liang S, Ma W B, Fang M Y, Talbot N J,Wang Z Y. 2010. MoRic8 is a novel component of G-proteinsignaling during plant infection by the rice blast fungusMagnaporthe oryzae. Molecular Plant-Microbe Interactions,23, 317-331.[7]Liu T B, Chen G Q, Min H, Lin F C. 2009. MoFLP1, encoding anovel fungal fasciclin-like protein, is involved in conidiationand pathogenicity in Magnaporthe oryzae. Journal ofZhejiang University (Science B), 10, 434-444.[8]Liu S, Dean R A. 1997. G protein α-subunit genes control growth,development and pathogenicity of Magnaporthe grisea.Molecular Plant-Microbe Interactions, 10, 1075-1086.[9]Liu X H, Lu J P, Zhang L, Dong B, Min H, Lin F C. 2007.Involvement of a Magnaporthe grisea serine/threonine kinasegene, MgATG1, in appressorium turgor and pathogenesis.Eukaryotic Cell, 6, 997-1005.[10]Lu J P, Feng X X, Liu X H, Lu Q, Wang H K, Lin F C. 2007.Mnh6, a nonhistone protein, is required for fungaldevelopment and pathogenicity of Magnaporthe grisea.Fungal Genetics and Biology, 44, 819-829.[11]Oh Y, Donofrio N, Pan H Q, Coughlan S, Brown D E, Meng S,Mitchell T, Dean R A. 2008. Transcriptome analysis revealsnew insight into appressorium formation and function in therice blast fungus Magnaporthe oryzae. Genome Biology, 9,R85. http://genomebiology.com/content/9/5/R85Siniossoglou S, Santos-Rosa H, Rappsilber J, Mann M, Hurt E.1998. A novel complex of membrane proteins required forformation of a spherical nucleus. The EMBO Journal, 17,6449-6464.[12]Son S, Osmani S A. 2009. Analysis of all protein phosphatasegenes in Aspergillus nidulans identifies a new mitoticregulator, Fcp1. Eukaryotic Cell, 8, 573-585.[13]Talbot N J, Ebbole D J, Hamer J E. 1993. Identification andcharacterization of MPG1, a gene involved in pathogenicityfrom the rice blast fungus Magnaporthe grisea. The PlantCell, 5, 1575-1590.[14]Talbot N J, Kershaw M J, Wakley G E, de Vries O, Wessels J,Hamer J E. 1996. MPG1 encodes a fungal hydrophobininvolved in surface interactions during infection-relateddevelopment of Magnaporthe grisea. The Plant Cell, 8, 985-999.[15]Viaud M C, Balhadere P V, Talbot N J. 2002. A Magnaporthegrisea cyclophilin acts as a virulence determinant during plantinfection. The Plant Cell, 14, 917-930.[16]Xu J R, Hamer J E. 1996. MAP kinase and cAMP signalingregulate infection structure formation and pathogenic growthin the rice blast fungus Magnaporthe grisea. Genes &Development, 10, 2696-2706.[17]Xue C Y, Park G, Choi W, Zheng L, Dean R A, Xu J R. 2002.Two novel fungal virulence genes specifically expressed inappressoria of the rice blast fungus. The Plant Cell, 14, 2107-2119.[18]Yang J, Zhao X Y, Sun J, Kang Z S, Ding S L, Xu J R, Peng Y L.2010. A novel protein Com1 is required for normal conidiummorphology and full virulence in Magnaporthe oryzae.Molecular Plant-Microbe Interactions, 23, 112-123. |