Ablimit R, Li W K, Zhang J D, Gao H N, Zhao Y M, Cheng M M, Meng X Q, An L Z, Chen Y. 2022. Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize–green manure intercropping in Northwest China. Journal of Environmental Management, 321, 115859.
Amézketa E. 1999. Soil aggregate stability: A review. Journal of Sustainable Agriculture, 14, 83–151.
Ansari M A, Choudhury B U, Layek J, Das A, Lal R, Mishra V K. 2022. Green manuring and crop residue management: Effect on soil organic carbon stock aggregation and system productivity in the foothills of Eastern Himalaya (India). Soil & Tillage Research, 218, 105318.
Arab P B, Araújo T P, Pejon O J. 2015. Identification of clay minerals in mixtures subjected to differential thermal and thermogravimetry analyses and methylene blue adsorption tests. Applied Clay Science, 114, 133–140.
Arnarson T S, Keil R G. 2000. Mechanisms of pore water organic matter adsorption to montmorillonite. Marine Chemistry, 71, 309–320.
Bai J S, Zhang S Q, Huang S M, Peng X X, Zhao S C, Qiu S J, Ping H E, Zhou W. 2023. Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen:A 30-year study. Journal of Integrative Agriculture, 22, 3517–3534.
Baker L L, Nickerson R D, Strawn D G. 2014. XAFS study of Fe-substituted Allophane and Imogolite. Clays and Clay Minerals, 62, 20–34.
Balan E, Fritsch E, Juillot F, Allard T, Petit S. 2021. Local mode interpretation of the OH overtone spectrum of 1:1 phyllosilicates. European Journal of Mineralogy, 33, 209–220.
Balbino L C, Bruand A, Cousin I, Brossard M, Quétin P, Grimaldi M. 2004. Change in the hydraulic properties of a Brazilian clay Ferralsol on clearing for pasture. Geoderma, 120, 297–307.
Banwart T, Steve A. 2011. Save our soils. Nature, 474, 151–152.
Barre P, Fernandez-Ugalde O, Virto I, Velde B, Chenu C. 2014. Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: Incomplete knowledge and exciting prospects. Geoderma, 235, 382–395.
Basset C, Najm M A, Ghezzehei T, Hao X X, Daccache A. 2023. How does soil structure affect water infiltration? A meta-data systematic review. Soil & Tillage Research, 226, 105577.
Bhattacharyya R, Prakash V, Kundu S, Srivastva A K, Gupta H S, Mitra S. 2010. Long-term effects of fertilization on carbon and nitrogen sequestration and aggregate associated carbon and nitrogen in the Indian sub-Himalaya. Nutrient Cycling in Agroecosystems, 86, 1–16.
Le Bissonnais Y. 1996. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 47, 425–437.
Bronick C J, Lal R. 2005. Soil structure and management: A review. Geoderma, 124, 3–22.
Byrne J M, Klueglein N, Pearce C, Rosso M K, Appel E, Kappler A. 2015. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science, 347, 1473–1476.
Cai S S, Sun L, Wang W, Li Y, Ding J L, Jin L, Li Y M, Zhang J M, Wang J K, Wei D. 2024. Straw mulching alters the composition and loss of dissolved organic matter in farmland surface runoff by inhibiting the fragmentation of soil small macroaggregates. Journal of Integrative Agriculture, 23, 1703–1717.
Calabi-Floody M, Bendall J S, Jara A A, Welland M E, Theng B, Rumpel C, Mora M L. 2011. Nanoclays from an Andisol: Extraction properties and carbon stabilization. Geoderma, 161, 159–167.
Carter M R, Gregorich E G. 2007. Soil Sampling and Methods of Analysis. CRC Press, Boca Raton.
Chang F D, Zhang H Y, Zhao N, Zhao P Y, Song J S, Yu R, Kan Z R, Wang X Q, Wang J, Liu H J, Han D X, Wen X Y, Li Y Y. 2024. Green manure removal with reduced nitrogen improves saline-alkali soil organic carbon storage in a wheat–green manure cropping system. Science of the Total Environment, 926, 171827.
Chen C M, Dynes J J, Wang J, Sparks D L. 2014. Properties of Fe-organic matter associations via coprecipitation versus adsorption. Environmental Science & Technology, 48, 13751–13759.
Chen C M, Hall S J, Coward E, Thompson A. 2020. Iron-mediated organic matter decomposition in humid soils can counteract protection. Nature Communications, 11, 2255.
Chen M M, Zhang S R, Liu L, Ding X D. 2023. Influence of organic fertilization on clay mineral transformation and soil phosphorous retention: Evidence from an 8-year fertilization experiment. Soil & Tillage Research, 230, 105702.
Chen M M, Zhang S R, Liu L, Liu J G, Ding X D. 2022. Organic fertilization increased soil organic carbon stability and sequestration by improving aggregate stability and iron oxide transformation in saline-alkaline soil. Plant and Soil, 474, 233–249.
Chen Y L, Huang L, Cheng L J, Liu Z J, Xue B. 2023. Straw returning and potassium fertilization affect clay mineralogy and available potassium. Nutrient Cycling in Agroecosystems, 126, 195–211.
Churchman G J. 2010. Is the geological concept of clay minerals appropriate for soil science? A literature-based and philosophical analysis. Physics and Chemistry of the Earth, 35, 927–940.
Colombo C, Palumbo G, He J Z, Pinton R, Cesco S. 2014. Review on iron availability in soil: Interaction of Fe minerals plants and microbes. Journal of Soils and Sediments, 14, 538–548.
Das R, Purakayastha T J, Das D, Ahmed N, Kumar R, Biswas S, Walia S S, Singh R, Shukla V K, Yadava M S, Ravisankar N, Datta S C. 2019. Long-term fertilization and manuring with different organics alter the stability of carbon in colloidal organo-mineral fractions in soils of varying clay mineralogy. Science of the Total Environment, 684, 682–693.
Denef K, Six J. 2010. Clay mineralogy determines the importance of biological versus abiotic processes for macroaggregate formation and stabilization. European Journal of Soil Science, 56, 469–479.
Franzluebbers A J, Arshad M A. 1996. Water-stable aggregation and organic matter in four soils under conventional and zero tillage. Canadian Journal of Soil Science, 76, 387–393.
Fang H, Liu K L, Li D M, Peng X H, Zhang W J, Zhou H. 2021. Long-term effects of inorganic fertilizers and organic manures on the structure of a paddy soil. Soil & Tillage Research, 213, 105137.
Fernández-Ugalde O, Barré P, Hubert F, Virto I, Girardin C, Ferrage E, Caner L, Chenu C. 2013. Clay mineralogy differs qualitatively in aggregate-size classes: Clay-mineral-based evidence for aggregate hierarchy in temperate soils. European Journal of Soil Science, 64, 410–422.
Fu Y, Zhao Y K, Wang H, Chen X W, Wang Y X. 2021. A new method for weakening slaking of collecting eroded aggregates by water erosion. Journal of Soils and Sediments, 21, 2497–2510.
Gabriel G V, Oliveira L C, Barros D J, Bento M S, Neu V, Toppa R H, Carmo J B, Navarrete A A. 2020. Methane emission suppression in flooded soil from Amazonia. Chemosphere, 250, 126263.
Gao S J, Cao W D, Zhou G P, Rees R M. 2021. Bacterial communities in paddy soils changed by milk vetch as green manure: A study conducted across six provinces in south China. Pedosphere, 31, 521–530.
Gao S J, Li S, Zhou G P, Cao W D. 2023. The potential of green manure to increase soil carbon sequestration and reduce the yield-scaled carbon footprint of rice production in southern China. Journal of Integrative Agriculture, 22, 2233–2247.
Guascito M R, Cesari D, Chirizzi D, Genga A, Contini D. 2015. XPS surface chemical characterization of atmospheric particles of different sizes. Atmospheric Environment, 116, 146–154.
Guhra T, Stolze K, Totsche K U. 2022. Pathways of biogenically excreted organic matter into soil aggregates. Soil Biology and Biochemistry, 164, 108483.
Han T F, Huang J, Liu K L, Fan H Z, Shi X J, Chen J, Jiang X J, Liu G R, Liu S J, Zhang L, Xu Y M, Feng G, Zhang H M. 2021. Soil potassium regulation by changes in potassium balance and iron and aluminum oxides in paddy soils subjected to long-term fertilization regimes. Soil and Tillage Research, 214, 105168.
Hartmann M, Six J. 2023. Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment, 4, 4–18.
He Y B, Gu F, Xu C, Wang Y. 2019. Assessing of the influence of organic and inorganic amendments on the physical-chemical properties of a red soil (Ultisol) quality. Catena, 183, 104231.
Huang C Q, Meng S M, Tan W F, Wen S L, Li D C, Wang B R, Koopal L K. 2021. Regional differences in mineral weathering characteristics of zonal soils under intensive agriculture. Applied Clay Science, 215, 106336.
Huang X L, Tang H Y, Kang W J, Yu G H, Ran W, Hong J P, Shen Q R. 2018. Redox interface-associated organo-mineral interactions: A mechanism for C sequestration under a rice–wheat cropping system. Soil Biology and Biochemistry, 120, 12–23.
Huang Y N, Huang L, Gao J S, Geng M J, Xue B, Zhang H M, Huang J. 2023. Effects of long-term green manure application on organic carbon fractions and clay minerals and their interactions in paddy soil aggregates. Plant and Soil, 14, 1–18.
Huang Y N, Huang L, Nie J, Geng M J, Lu Y H, Liao Y L, Xue B. 2022. Effects of substitution of chemical fertilizer by Chinese milk vetch on distribution and composition of aggregates-associated organic carbon fractions in paddy soils. Plant and Soil, 481, 641–659
Igwe C A, Akamigbo F, Mbagwu J. 1999. Chemical and mineralogical properties of soils in southeastern Nigeria in relation to aggregate stability. Geoderma, 92, 111–123.
Jozedaemi E, Golchin A. 2024. Changes in aggregate-associated carbon and microbial respiration affected by aggregate size, soil depth, and altitude in a forest soil. Catena, 234, 107567.
Kemper W D, Rosenau R C. 1986. Aggregate stability and size distribution, In: Klute A, ed., Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Agronomy Monograph No. 9. Soil Science Society of America, Madison, WI, USA, pp. 425–442.
Khan M I, Gwon H S, Alam M A, Song H J, Das S, Kim P J. 2020. Short term effects of different green manure amendments on the composition of main microbial groups and microbial activity of a submerged rice cropping system. Applied Soil Ecology, 147, 103400.
Kim J W, Dong H, Seabaugh J, Newell S W, Eberl D D. 2004. Role of microbes in the smectite-to-illite reaction. Science, 303, 830–832.
Kirsten M, Mikutta R, Kimaro D N, Feger K H, Kalbitz K. 2021. Aluminous clay and pedogenic Fe oxides modulate aggregation and related carbon contents in soils of the humid tropics. Soil, 7, 363–375.
Kleber M, Bourg I C, Coward E K, Hansel C M, Myneni S C B, Nunan N. 2021. Dynamic interactions at the mineral–organic matter interface. Nature Reviews Earth & Environment, 2, 402–421.
Kögel-Knabner I, Amelung W. 2021. Soil organic matter in major pedogenic soil groups. Geoderma, 384, 114785.
Lenhardt K R, Breitzke H, Buntkowsky G, Mikutta C, Rennert T. 2022. Interactions of dissolved organic matter with short-range ordered aluminosilicates by adsorption and co-precipitation. Geoderma, 423, 115960.
Lehmann J, Kinyangi J, Solomon D. 2007. Organic matter stabilization in soil microaggregates: Implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry, 85, 45–57.
Li Q, Guo G G, Singh B P, Li L F, Hu W F, Wang H L, Li Y C. 2023a. Associations of soil Fe oxides and organic carbon vary in different aggregate fractions under warming. Journal of Soils and Sediments, 23, 2744–2755.
Li Q, Hu W F, Li L F, Li Y C. 2023b. Interactions between organic matter and Fe oxides at soil micro-interfaces: Quantification associations and influencing factors. Science of the Total Environment, 855, 158710.
Liang H, Zhou G P, Gao S J, Nie J, Xu C X, Wu J, Liu C Z, Lv Y H, Huang Y B, Geng M J, Wang J H, He T G, Cao W D. 2023. Exploring site-specific N application rate to reduce N footprint and increase crop production for green manure-rice rotation system in southern China. Journal of Environmental Management, 347, 119033.
Lima A P B, Inda A V, Zinn Y L, Silva E R D, Nascimento P C. 2022. Soil formation and properties along a sedimentary lithosequence in the ecotonal Cerrados of Mato Grosso Brazil. Catena, 219, 106599.
Lindsay W L. 1991. Iron oxide solubilization by organic matter and its effect on iron availability. Plant and Soil, 130, 27–34.
Liu Y J, Wu S L, Nguyen T, Gordon S, Chan T S, Lu Y R, Huang L B. 2018. Microstructural characteristics of naturally formed hardpan capping sulfidic copper-lead-zinc tailings. Environmental Pollution, 242, 1500–1509.
Liu Y K, Zhang S C, Zou C N, Wang X M, Sokolov I, Su J, Wang H J, He K. 2021. Quantitative measurement of interaction strength between kaolinite and different oil fractions via atomic force microscopy: Implications for clay-controlled oil mobility. Marine and Petroleum Geology, 133, 105296.
Maltoni K L, De Mello L M M, Dubbin W E. 2017. The effect of Ferralsol mineralogy on the distribution of organic C across aggregate size fractions under native vegetation and no-tillage agriculture. Soil Use and Management, 33, 328–338.
Montgomery D R. 2007. Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences of the United States of America, 104, 13268–13272.
Mulvaney R L. 1996. Nitrogen-Inorganic forms. In: Sparks D L, ed., Methods of Soil Analysis. Part 3. Agronomy Monograph No. 5. Soil Science Society of America, Madison, WI, USA, pp. 1123–1184.
Ndzana G M, Huang L, Zhang Z Y, Zhu J, Liu F, Bhattacharyya R. 2019. The transformation of clay minerals in the particle size fractions of two soils from different latitude in China. Catena, 175, 317–328.
Newcomb C J, Qafoku N P, Grate J W, Bailey V L, Yoreo De J J. 2017. Developing a molecular picture of soil organic matter–mineral interactions by quantifying organo–mineral binding. Nature Communications, 8, 396.
Oades J M. 1984. Soil organic matter and structural stability: Mechanisms and implications for management. Plant and Soil, 76, 319–337.
Olagoke F K, Bettermann A, Nguyen P T B, Redmile-Gordon M, Babin D, Smalla K, Nesme J, Sørensen S J, Kalbitz K, Vogel C. 2022. Importance of substrate quality and clay content on microbial extracellular polymeric substances production and aggregate stability in soils. Biology and Fertility of Soils, 58, 435–457.
Parfitt R, Childs C. 1988. Estimation of forms of Fe and Al - A review and analysis of contrasting soils by dissolution and Mossbauer methods. Soil Research, 26, 121–144.
Philippot L, Chenu C, Kappler A, Rillig M C, Fierer N. 2023. The interplay between microbial communities and soil properties. Nature Reviews Microbiology, 22, 226–239.
Possinger A R, Zachman M J, Enders A, Levin B D A, Muller D A, Kourkoutis L F, Lehmann J. 2020. Organo–organic and organo–mineral interfaces in soil at the nanometer scale. Nature Communications, 11, 6103.
Rabot E, Wiesmeier M, Schlütera S, Vogel H J. 2018. Soil structure as an indicator of soil functions: A review. Geoderma, 314, 122–137.
Rakhsh F, Golchin A, Beheshti A, Nelson P N. 2020. Mineralization of organic carbon and formation of microbial biomass in soil: Effects of clay content and composition and the mechanisms involved. Soil Biology and Biochemistry, 151, 108036.
Mehra O P, Jackson M L. 1960. Iron oxide removal from soils and clays by a dithionitecitrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317–327.
Regelink I C, Stoof C R, Rousseva S, Weng L P, Lair G J, Kram P, Nikolaidis N P, Kercheva M, Banwart S, Comans R. 2015. Linkages between aggregate formation porosity and soil chemical properties. Geoderma, 247–248, 24–37.
Six J, Bossuyt H, Degryze S, Denef K. 2004. A history of research on the link between (micro)aggregates soil biota and soil organic matter dynamics. Soil & Tillage Research, 79, 7–31.
Song Y L, Wang C Y, Linderholm H W, Fu Y, Cai W Y, Xu J X, Zhuang L W, Wu M X, Shi Y X, Wang G F, Chen D L. 2022. The negative impact of increasing temperatures on rice yields in southern China. Science of the Total Environment, 820, 153262.
Sullivan P L, Billings S A, Hirmas D, Li L, Zhang X, Ziegler S, Murenbeeld K, Ajami H, Guthrie A, Singha K, Giménez D, Duro A, Moreno V, Flores A, Cueva A, Koop, Aronson E L, Barnard H R, Banwart S A, Keen R M, et al. 2022. Embracing the dynamic nature of soil structure: A paradigm illuminating the role of life in critical zones of the Anthropocene. Earth-Science Reviews, 225, 103873.
Sun Z H, Liu Z, Han J C, Wang H Y, Zhang H O, Yan J K. 2023. Long-term effects of soft rock amendment on changes of soil aggregate cementing agents of sandy soil by SEM-EDS. Frontiers in Environmental Science, 11, 1207781.
Szymański W. 2017. Chemistry and spectroscopic properties of surface horizons of Arctic soils under different types of tundra vegetation – A case study from the Fuglebergsletta coastal plain (SW Spitsbergen). Catena, 156, 325–337.
Thomaz E L, Araujo-Junior C F, Vendrame P, Melo T R. 2022. Mechanisms of aggregate breakdown in (sub)tropical soils: Effects of the hierarchical resistance. Catena, 216, 106377.
Trakoonyingcharoen P, Kheoruenromne I, Suddhiprakarn A, Gilkes R J. 2006. Properties of kaolins in red Oxisols and red Ultisols in Thailand. Applied Clay Science, 32, 25–39.
Vaksmaa A, Van Alen T A, Ettwig K F, Lupotto E, Valè G, Jetten M S, Lüke C. 2017. Stratification of diversity and activity of methanogenic and methanotrophic microorganisms in a nitrogen-fertilized Italian paddy soil. Frontiers in Microbiology, 8, 2127.
Walkley A J, Black I A. 1934. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.
Wen Y, Liu W, Deng W, He X, Yu G. 2019. Impact of agricultural fertilization practices on organo-mineral associations in four long-term field experiments: Implications for soil C sequestration. Science of the Total Environment, 651, 591–600.
Wen Y M, You J W, Zhu J, Hu H Q, Gao J S, Huang J. 2020. Long-term green manure application improves soil K availability in red paddy soil of subtropical China. Journal of Soils and Sediments, 21, 63–72.
Wu S L, Nguyen T A H, Liu Y J, Southam G, Wang S C, Chan T S, Lu Y R, Huang L B. 2019a. Deficiencies of secondary Fe (oxy)hydroxides associated with phyllosilicates and organic carbon limit the formation of water-stable aggregates in Fe-ore tailings. Chemical Geology, 523, 73–87.
Wu S L, Liu Y J, Southam G, Robertson L, Chiu T H, Crossa A T, Dixon K W, Stevens J C, Zhong H T, Chan T S, Lu Y J, Huang L B. 2019b. Geochemical and mineralogical constraints in iron ore tailings limit soil formation for direct phytostabilization. Science of the Total Environment, 651, 192–202.
Wu X L, Wei Y J, Cai C F, Yuan Z J, Li D Q, Liao Y S, Deng Y S. 2021. Quantifying the contribution of phyllosilicate mineralogy to aggregate stability in the East Asian monsoon region. Geoderma, 393, 115036.
Xie J Y, Gao J Y, Cao H B, Li J H, Wang X, Zhang J, Meng H S, Hong J P, Li T L, Xu M G. 2024. Calcium carbonate promotes the formation and stability of soil macroaggregates in mining areas of China. Journal of Integrative Agriculture, 23, 1034–1047.
Xie J C, Fan Q Y, Liang T, Liang H, Wang H, Gui Z G, Wu J, Gao S J, Cao W D. 2024. Green manuring reduces cadmium accumulation in rice: Roles of iron plaque and dissolved organic matter. Environmental Research, 251, 118719.
Xue B, Huang L, Huang Y N, Kubar K A, Li X K, Lu J W. 2020. Straw management influences the stabilization of organic carbon by Fe (oxyhydr)oxides in soil aggregates. Geoderma, 358, 113987.
Xue B, Huang L, Huang Y N, Yin Z Y, Li X K, Lu J W. 2019a. Effects of organic carbon and iron oxides on soil aggregate stability under different tillage systems in a rice–rape cropping system. Catena, 177, 1–12.
Xue B, Huang L, Huang Y N, Zhou F L, Li F, Kubar K A, Li X K, Lu J W, Zhu J. 2019b. Roles of soil organic carbon and iron oxides on aggregate formation and stability in two paddy soils. Soil & Tillage Research, 187, 161–171.
Xue B, Huang L, Li X K, Lu J W, Gao R L, Kamran M, Fahad S. 2022. Effect of clay mineralogy and soil organic carbon in aggregates under straw incorporation. Agronomy, 12, 534.
Yi Q, Wu S L, Southam G, Robertson L, You F, Liu Y J, Wang S C, Saha N, Webb R, Wykes J, Chan T S, Lu Y R, Huang L B. 2021. Acidophilic iron- and sulfur-oxidizing bacteria Acidithiobacillus ferrooxidans drives alkaline pH neutralization and mineral weathering in Fe Ore tailings. Environmental Science & Technology, 55, 8020–8034.
Yu W J, Huang W J, Weintraub-Leff S R, Hall S J. 2022. Where and why do particulate organic matter (POM) and mineral-associated organic matter (MAOM) differ among diverse soils? Soil Biology and Biochemistry, 172, 108756.
Zhao Z J, Chang E, Lai P, Dong Y, Xu R K, Fang D, Jiang J. 2019. Evolution of soil surface charge in a chronosequence of paddy soil derived from Alfisol. Soil and Tillage Research, 192, 144–150.
Zhang B F, Yu T, Guo H Z, Chen J R, Liu Y, Yuan P. 2022. Effect of the SiO2/Al2O3 molar ratio on the microstructure and properties of clay-based geopolymers: A comparative study of kaolinite-based and halloysite-based geopolymers. Clays and Clay Minerals, 70, 882–902.
Zhang M N, Song X J, Wu X P, Zheng F J, Li S P, Zhuang Y, Man X L, Degré A. 2024a. Microbial regulation of aggregate stability and carbon sequestration under long-term conservation tillage and nitrogen application. Sustainable Production and Consumption, 44, 74–86.
Zhang S T, Ren T, Cong W F, Fang Y T, Zhu J, Zhao J, Cong R H, Li X K, Lu J W. 2024b. Oilseed rape-rice rotation with recommended fertilization and straw returning enhances soil organic carbon sequestration through influencing macroaggregates and molecular complexity. Agriculture, Ecosystems & Environment, 367, 108960.
Zhang Y, Liu Q G, Zhang W D, Wang X H, Mao R, Tigabu M, Ma X Q. 2021. Linkage of aggregate formation aggregate-associated C distribution and microorganisms in two different-textured ultisols: A short-term incubation experiment. Geoderma, 394, 114979.
Zhang Z H, Nie J, Liang H, Wei C L, Wang Y, Liao Y L, Lu Y H, Zhou G P, Gao S J, Cao W D. 2023. The effects of co-utilizing green manure and rice straw on soil aggregates and soil carbon stability in a paddy soil in southern China. Journal of Integrative Agriculture, 22, 1529–1545.
Zhang Z Y, Huang L, Liu F, Wang M K, Fu Q L, Zhu J. 2016. Characteristics of clay minerals in soil particles of two Alfisol in China. Applied Clay Science, 120, 51–60.
Zhou W, Ma Q X, Wu L, Hu R G, Jones D L, Chadwick D R, Jiang Y B, Wu Y P, Xia X G, Yang L, Chen Y F. 2022. The effect of organic manure or green manure incorporation with reductions in chemical fertilizer on yield-scaled N2O emissions in a citrus orchard. Agriculture, Ecosystems & Environment, 326, 107806.
|