Acreche M M, Slafer G A. 2011. Lodging yield penalties as affected by breeding in Mediterranean wheats. Field Crops Research, 122, 40–48.
Ahmad I, Ahmad S, Yang X, Meng X, Yang B, Liu T, Han Q. 2021. Effect of uniconazole and nitrogen level on lodging resistance and yield potential of maize under medium and high plant density. Plant Biology, 23, 485–496.
Ahmad I, Kamran M, Ali S, Bilegjargal B, Cai T, Ahmad S, Meng X, Su W, Liu T, Han Q. 2018. Uniconazole application strategies to improve lignin biosynthesis, lodging resistance and production of maize in semiarid regions. Field Crops Research, 222, 66–77.
Ahmad I, Meng X, Kamran M, Ali S, Ahmad S, Liu T, Cai T, Han Q. 2020. Effects of uniconazole with or without micronutrient on the lignin biosynthesis, lodging resistance, and winter wheat production in semiarid regions. Journal of Integrative Agriculture, 19, 62–77.
Appenzeller L, Doblin M, Barreiro R, Wang H, Niu X, Kollipara K, Carrigan L, Tomes D, Chapman M, Dhugga S. 2004. Cellulose synthesis in maize: Isolation and expression analysis of the cellulose synthase (CesA) gene family. Cellulose, 11, 287–299.
Baldwin L, Głazowska S, Mravec J, Fangel J, Zhang H, Felby C, Willats W G, Schjoerring J K. 2017. External nitrogen input affects pre- and post-harvest cell wall composition but not the enzymatic saccharification of wheat straw. Biomass and Bioenergy, 98, 70–79.
Bi C, Chen F, Jackson L, Gill B S, Li W. 2011. Expression of lignin biosynthetic genes in wheat during development and upon interaction by fungal pathogens. Plant Molecular Biology Reporter, 29, 149–161.
Bremner J M. 1960. Determination of nitrogen in soil by the Kjeldahl method. Journal of Agricultural Science, 55, 11–33.
Chen C, Chang J, Wang S, Lu J, Liu Y, Si H, Sun G, Ma C. 2021. Cloning, expression analysis and molecular marker development of cinnamyl alcohol dehydrogenase gene in common wheat. Protoplasma, 258, 881–889.
Chen J, Lv F, Liu J, Ma Y, Wang Y, Chen B, Meng Y, Zhou Z. 2014. Effect of late planting and shading on cellulose synthesis during cotton fiber secondary wall development. PLoS ONE, 9, e105088.
Chen X G, Shi C Y, Yin Y P, Wang Z L, Shi Y H, Peng D L, Ni Y L, Cai T. 2011. Relationship between lignin metabolism and lodging resistance in wheat. Acta Agronomica Sinica, 37, 1616–1622. (in Chinese)
Dai X, Wang Y, Dong X, Qian T, Yin L, Dong S, Chu J, He M. 2017. Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat. The Crop Journal, 5, 541–552.
Desprez T, Juraniec M, Crowell E F, Jouy H, Pochylova Z, Parcy F, Höfte H, Gonneau M, Vernhettes S. 2007. Organization of cellulose synthase complexes involved in primary cell wall synthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 104, 15572–15577.
Domon J M, Baldwin L, Acket S, Caudeville E, Arnoult S, Zub H, Gillet F, Lejeune-Henaut I, Brancourt-Hulmel M, Pelloux J, Rayon C. 2013. Cell wall compositional modifications of Miscanthus ecotypes in response to cold acclimation. Phytochemistry, 85, 51–61.
Feng S W, Ru Z G, Ding W H, Hu T Z, Li G. 2019. Study of the relationship between field lodging and stem quality traits of winter wheat in the North China Plain. Crop and Pasture Science, 70, 772–780.
Hagiwara M, Izusawa H, Inoue N, Matano T. 1999. Varietal differences of shoot growth characters related to lodging in tartary buckwheat. Fagopyrum, 16, 67–72.
Hamann T, Osborne E, Youngs H L, Misson J, Nussaume L, Somerville C. 2004. Global expression analysis of CESA and CSL genes in Arabidopsis. Cellulose, 11, 279–286.
Houston K, Burton R A, Sznajder B, Rafalski A J, Dhugga K S, Mather D E, Taylor J, Steffenson B J, Waugh R, Fincher G B. 2015. A genome-wide association study for culm cellulose content in barley reveals candidate genes co-expressed with members of the CELLULOSE SYNTHASE A gene family. PLoS ONE, 10, e0130890.
Hu Y, Javed H H, Asghar M A, Peng X, Brestic M, Skalický M, Ghafoor A Z, Cheema H N, Zhang F, Wu Y. 2022. Enhancement of lodging resistance and lignin content by application of organic carbon and silicon fertilization in Brassica napus L. Frontiers in Plant Science, 13, 807048.
Kamran M, Ahmad I, Wu X, Liu T, Ding R, Han Q. 2018. Application of paclobutrazol: A strategy for inducing lodging resistance of wheat through mediation of plant height, stem physical strength, and lignin biosynthesis. Environmental Science and Pollution Research, 25, 29366–29378.
Kaur S, Dhugga K S, Gill K, Singh J. 2016. Novel structural and functional motifs in cellulose synthase (CesA) genes of bread wheat (Triticum aestivum L.). PLoS ONE, 11, e0147046.
Khobra R, Sareen S, Meena B K, Kumar A, Tiwar V, Singh G P. 2019. Exploring the traits for lodging tolerance in wheat genotypes: A review. Physiology and Molecular Biology of Plants, 25, 589–600.
Kong E, Liu D, Guo X, Yang W, Sun J, Li X, Zhang K, Cui D, Lin J, Zhang A. 2013. Anatomical and chemical characteristics associated with lodging resistance in wheat. The Crop Journal, 1, 43–49.
Kotake T, Aohara T, Hirano K, Sato A, Kaneko Y, Tsumuraya Y, Takatsuji H, Kawasaki S. 2011. Rice Brittle culm 6 encodes a dominant-negative form of CesA Protein that perturbs cellulose synthesis in secondary cell walls. Journal of Experimental Botany, 62, 2053–2062.
Li C, Luo Y, Jin M, Sun S, Wang Z, Li Y. 2021. Response of lignin metabolism to light quality in wheat population. Frontiers in Plant Science, 12, 729647.
Ma Q H. 2007. Characterization of a cinnamoyl-CoA reductase that is associated with stem development in wheat. Journal of Experimental Botany, 58, 2011–2021.
Ma Q H, Luo H R. 2015. Biochemical characterization of caffeoyl coenzyme A 3-O-methyltransferase from wheat. Planta, 242, 113–122.
McFarlane H E, Doring A, Persson S. 2014. The cell biology of cellulose synthesis. Annual Review of Plant Biology, 65, 69–94.
Melich A. 1953. Determination of P, Ca, Mg, K, Na, and NH4. North Carolina Soil Testing Division, NC State University, Raleigh, North Carolina, USA. pp. 23–89.
Morrison T A, Kessler J R, Hatfield R D, Buxton D R. 1994. Activity of two lignin biosynthesis enzymes during development of a maize internode. Journal of the Science of Food and Agriculture, 65, 133–139.
Niu L, Feng S, Ding W, Li G. 2016. Influence of speed and rainfall on large-scale wheat lodging from 2007 to 2014 in China. PLoS ONE, 11, e0157677.
Peake A S, Bell K L, Fischer R A, Gardner M, Das B T, Poole N, Mumford M. 2020. Cultivar × management interaction to reduce lodging and improve grain yield of irrigated spring wheat: Optimising plant growth regulator use, N application timing, row spacing and sowing date. Frontiers in Plant Science, 11, 401.
Peng D, Chen X, Yin Y, Lu K, Yang W, Tang Y, Wang Z. 2014. Lodging resistance of winter wheat (Triticum aestivm L.): Lignin accumulation and its related enzymes activities due to the application of paclobutrazol or gibberellin acid. Field Crops Research, 157, 1–7.
Persson S, Paredez A, Carroll A, Palsdottir H, Doblin M, Poindexter P, Khitrov N, Auer M, Somerville C R. 2007. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 104, 15566–15571.
Shah A N, Tanveer M, Abbas A, Yildirim M, Shah A A, Ahmad M I, Wang Z, Sun W, Song Y. 2021. Combating dual challenges in maize under high planting density: Stem lodging and kernel abortion. Frontiers in Plant Science, 12, 699085.
Spink J H, Semere T, Sparkes D L, Whaley J M, Foulkes M J, Clare R W, Scott R K. 2005. Effect of sowing date on the optimum plant density of winter wheat. Annals of Applied Biology, 137, 179–188.
Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H. 2003. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiology, 133, 73–83.
Turner S, Gallois P, Brown D. 2007. Tracheary element differentiation. Annals of Applied Biology, 58, 407–433.
Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. 2010. Lignin biosynthesis and structure. Plant Physiology, 153, 895–905.
Walkley A, Black I A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.
Wang C, Hu D, Liu X B, She H Z, Ruan R W, Yang H, Yi Z L, Wu D Q. 2015a. Effects of uniconazole on the lignin metabolism and lodging resistance of culm in common buckwheat (Fagopyrum esculentum M.). Field Crops Research, 180, 46–53.
Wang C, Ruan R W, Yuan X H, Hu D, Yang H, Li Y, Yi Z L. 2015b. Effects of nitrogen fertilizer and planting density on the lignin synthesis in the culm in relation to lodging resistance of buckwheat. Plant Production Science, 18, 218–227.
Wang L, Guo K, Li Y, Tu Y, Hu H, Wang B, Cui X. 2010. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biology, 10, 282.
Wang M, Zhu X, Wang K, Lu C, Luo M, Shan T, Zhang Z. 2018. A wheat caffeic acid 3-O-methltransferase TaCOMT-3D positively contributes to both resistance to sharp eyespot disease and stem mechanical strength. Scientific Reports, 8, 6543.
Weng F, Zhang W, Wu X, Xu X, Ding Y, Li G, Liu Z, Wang S. 2017. Impact of low-temperature, overcast and rainy weather during the reproductive growth stage on lodging resistance of rice. Scientific Reports, 7, 1–9.
Weng J K, Chapple C. 2010. The origin and evolution of lignin biosynthesis. New Phytologist, 187, 273–285.
Wu L, Zhang W, Ding Y, Zhang J, Camnula E D, Weng F, Liu Z, Ding C, Tang S, Chen L, Wang S, Li G. 2017. Shading contributes to the reduction of stem mechanical strength by decreasing cell wall synthesis in japonica rice (Oryza sativa L.). Frontiers in Plant Science, 8, 881.
Ye Y, Wang S, Wu K, Ren Y, Jiang H, Chen J, Tao L, Fu X, Liu B, Wu Y. 2021. A semi-dominant mutation in OsCESA9 improves salt tolerance and favors field straw decay traits by altering cell wall properties in rice. Rice, 14, 19.
Yin L, Dai X, He M. 2018. Delayed sowing improves nitrogen utilization efficiency in winter wheat without impacting yield. Field Crops Research, 221, 90–97.
Yu M, Wang M, Gyalpo T, Basang Y. 2021. Stem lodging resistance in hulless barley: Transcriptone and metabolome analysis of lignin biosynthesis pathways in contrasting genotypes. Genomics, 113, 935–943.
Yuen S H, Pollard A G. 1953. Determination of nitrogen in soil and plant materials: Use of boric acid in the micro-Kjeldahl method. Journal of the Science of Food and Agriculture, 4, 490–496.
Zandstra H G. 1968. Automated determination of phosphorus in sodium bicarbonate extracts. Canadian Journal of Soil Science, 48, 219–220.
Zhang J, Li G, Song Y, Liu Z, Yang C, Tang S, Zheng C, Wang S, Ding Y. 2014. Lodging resistance characteristics of high-yielding rice populations. Field Crops Research, 161, 64–74.
Zhang M, Wang H, Yi Y, Ding J, Zhu M, Li C, Guo W, Feng C, Zhu X. 2017. Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L.). PLoS ONE, 12, e0187543.
Zhang Q, Cheetamun R, Dhugga K S, Rafalski J A, Tingey S V, Shirley N J, Taylor J, Hayes K, Beatty M, Bacic A, Burton R A, Fincher G B. 2014. Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes. BMC Plant Biology, 14, 27.
Zhang R, Jia Z, Ma X, Ma H, Zhao Y. 2020. Characterising the morphological characters and carbohydrate metabolism of oat culms and their association with lodging resistance. Plant Biology, 22, 267–276.
Zhang W, Wu L, Ding Y, Weng F, Wu X, Li G, Liu Z, Tang S, Ding C, Wang S. 2016. Top-dressing nitrogen fertilizer rate contributes to decrease culm physical strength by reducing structural carbohydrate content in japonica rice. Journal of Integrative Agriculture, 15, 992–1004.
Zheng M, Chen J, Shi Y, Li Y, Yin Y, Yang D, Luo Y, Pang D, Xu X, Li W, Ni J, Wang Y, Wang Z, Li Y. 2017. Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat. Scientific Reports, 7, 41805.
|