Journal of Integrative Agriculture ›› 2022, Vol. 21 ›› Issue (4): 1188-1202.DOI: 10.1016/S2095-3119(21)63633-X

• • 上一篇    下一篇

  

  • 收稿日期:2020-10-30 接受日期:2021-01-21 出版日期:2022-04-01 发布日期:2021-01-21

The rhizospheric microbiome becomes more diverse with maize domestication and genetic improvement

HUANG Jun1, LI Yun-feng1, MA Yuan-ying2, LI Yan-sheng3, JIN Jian3, 4, LIAN Teng-xiang1   

  1. 1 Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510640, P.R.China
    2 Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane Qld 4072, Australia 
    3 Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R.China
    4 Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora Vic 3086, Australia

  • Received:2020-10-30 Accepted:2021-01-21 Online:2022-04-01 Published:2021-01-21
  • About author:HUANG Jun, E-mail: junhuang@scau.edu.cn; Correspondence LIAN Teng-xiang, Tel/Fax: +86-20-85288024, E-mail: liantx@scau.edu.cn; JIN Jian, E-mail: jinjian29@hotmail.com
  • Supported by:
    This work was supported by the Key Area Research and Development Program of Guangdong Province, China (2018B020202013), the National Key R&D Program of China (2018YFD1000903) and the Natural Science Foundation of Guangdong Province, China (2018A030313865).

摘要:

玉米在驯化和遗传改良过程中改变了形态及生理特性从而提高了产量和对胁迫的抗性,在这一过程中根际微生物的多样性可能也随之发生变化。了解玉米种质资源的进化如何影响其生长期的根际细菌结构,对于揭示植物-微生物之间的协同关系,进而提高驯化种质的产量具有重要意义。本研究在田间展开,选择9个具有代表性的驯化和遗传改良种质材料,分别在幼苗期、盛花期和成熟期对大雏草、地方种和自交系植物DNA和根际细菌DNA进行测序。检测并分析不同处理下土壤化学性质与细菌群落结构变化的关系。结果表明,玉米的驯化和遗传改良增加了根际细菌的多样性,改变了根际细菌的群落组成。根际中的核心微生物组在不同种质之间存在显著差异。共现网络分析表明,自交系的细菌网络模块性高于大雏草和地方品种。本研究最终表明:随着玉米的驯化和遗传改良,根际群落多样性随之增加,从而可以增强玉米对生物胁迫适应能力,提高对土壤养分的利用效率。


Abstract: Domestication and genetic improvement of maize improve yield and stress tolerance due to changes in morphological and physiological properties, which likely alter rhizosphere microbial diversity.  Understanding how the evolution of maize germplasm impacts its rhizobacterial traits during the growth stage is important for optimizing plant-microbe associations and obtaining yield gain in domesticated germplasms.  In this study, a total of nine accessions representing domestication and subsequent genetic improvement were selected.  We then sequenced the plant DNA and rhizobacterial DNA of teosinte, landraces and inbred lines at the seedling, flowering and maturity stages in a field trial.  Moreover, the soil chemical properties were determined at the respective stages to explore the associations of soil characteristics with bacterial community structures.  The results showed that domestication and genetic improvement increased the rhizobacterial diversity and substantially altered the rhizobacterial community composition.  The core microbiome in the rhizosphere differed among germplasm groups.  The co-occurrence network analysis demonstrated that the modularity in the bacterial network of the inbred lines was greater than those of teosinte and the landraces.  In conclusion, the increased diversity of the rhizobacterial community with domestication and genetic improvement may improve maize resilience to biotic stresses and soil nutrient availability to plants. 

Key words: teosinte , landraces ,  inbred lines ,  domestication and improvement ,  core microbiome ,  network