Journal of Integrative Agriculture ›› 2021, Vol. 20 ›› Issue (7): 1907-1920.DOI: 10.1016/S2095-3119(20)63420-7

所属专题: 动物营养合辑Animal Nutrition

• 论文 • 上一篇    下一篇

  

  • 收稿日期:2020-03-31 出版日期:2021-07-01 发布日期:2021-06-02

Effects of rearing system (floor vs. cage) and sex on performance, meat quality and enteric microorganism of yellow feather broilers

WANG Lai-di1, ZHANG Yang1, KONG Ling-ling1, WANG Zhi-xiu1, BAI Hao2, JIANG Yong1, BI Yu-lin1, CHANG Guo-bin1, CHEN Guo-hong1
  

  1. 1 Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, P.R.China
    2 Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education/Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, P.R.China
  • Received:2020-03-31 Online:2021-07-01 Published:2021-06-02
  • Contact: Correspondence CHANG Guo-bin, E-mail: passioncgb@163.com; CHEN Guo-hong, E-mail: ghchen@yzu.edu.cn
  • About author:WANG Lai-di, E-mail: yzwanglaidi@163.com
  • Supported by:
    This work was supported by the National Science & Technology Pillar Program of China (2015BAD03B03), the National Natural Science Youth Fund of China (31802057), and the priority academic program development of Jiangsu Higher Education Institutions, China.

摘要:

为了探究黄羽肉鸡的高效饲养模式,本研究以雪山草鸡为研究素材,按照2×2完全随机试验探究2种饲养方式以及性别对雪山草鸡生长性能、肉品质以及肠道微生物的影响。本试验将200只体重相近的雪山草鸡公母各半,按照性别和饲养方式随机分为四组,饲养方式分为笼饲和平养。结果表明,雄性肉鸡和笼养肉鸡比雌性肉鸡和平养肉鸡表现出更好的生产性能(P<0.001)和更高的全净膛率(P<0.001)。饲养模式和性别的交互作用对胸肌率和腿肌率有影响(P<0.05),雌性平养肉鸡胸肌率和腿肌率最高(P<0.02)。无论是雌鸡还是雄鸡,在笼养模式下肉鸡腹脂率均高于平养模式(P<0.01)。相比于其他组,雌性笼养肉鸡的胸肌肉品质较好(P<0.05)。雄性肉鸡的胸肌pH值低于雌性肉鸡,且与腿肌pH值的结果趋势一致,笼养肉鸡胸肌pH值高于平养肉鸡,而腿肌的pH值与此相反。肉品质指标的差异与肉鸡活动量差异有一定的关系。福利指标结果显示,平养模式下肉鸡的羽毛质量优于笼养肉鸡(P<0.01),步态得分无显著影响(P>0.05)。基于16S rRNA扩增测序的肠道菌群结果显示,各组肠道菌群中以厚壁菌门、变形菌门和拟杆菌门为主,盲肠菌群组成相对稳定。平养模式下鸡只肠道菌群的多样性较笼养模式更为丰富,但alpha多样性在各组间无显著差异(P>0.06)。肠道中拟杆菌门与厚壁菌门的比例、幽门螺杆菌和罗姆布茨菌的丰度等可能影响肉鸡的生产性能。综合看来,笼养模式以及雄性雪山鸡的选择可获得高效的生产性能,这可能与相关肠道菌群丰度差异有一定的关系,而平养模式下鸡只羽毛质量更好,肠道微生物群种类更为丰富,生产中可根据具体市场需求进行选择。


Abstract:

This study investigated the effects of floor and cage rearing systems on performance, meat quality, and enteric microorganisms of male and female yellow feather broilers.  Two hundred Xueshan chickens (42 days old; 100 of each sex) were divided into four groups, according to sex and rearing system (stainless-steel cage or litter floor).  Male and cage-reared broilers exhibited better (P<0.001) performance and higher (P≤0.001) eviscerated percentage than female and floor-reared broilers.  The interaction between rearing system and sex had an effect (P<0.05) on the percentage of breast and thigh muscles.  Female floor-reared broilers presented the highest (P<0.02) percentage of breast and thigh muscles among all the groups.  In both sexes, the abdominal fat content in cage-reared broilers was higher (P<0.01) than that in floor-reared broilers.  Female cage-reared broilers exhibited better (P<0.05) meat quality of breast muscle than other groups.  An analysis of welfare observations indicated that the feather quality of floor-reared broilers was better (P<0.01) than that of cage-reared broilers, whereas the gait scores were not significantly affected (P>0.05) by rearing system.  The enteric microbiota assessment by 16S rRNA amplicon-based sequencing showed that Firmicutes, Proteobacteria, and Bacteroidetes were the most prevalent phyla in both rearing systems, and that the cecum was relatively stable in terms of microbiome composition.  Floor-reared broilers exhibited a richer diversity of bacteria in the intestinal tract than cage-reared broilers, while alpha diversity was not significantly different (P>0.05) among the groups.  The ratio of Bacteroidetes to Firmicutes and the abundance of Helicobacter and Romboutsia could potentially affect the production of broilers.  These findings indicate that cage rearing improved the production of male Xueshan broilers, which may be due to the difference in enteric microbiota between cage and floor rearing systems. 

Key words: cage rearing ,  yellow feather broilers ,  performance ,  meat quality ,  microbiome