Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun E A, Brewer P B, Beveridge C A, Sieberer T, Sehr E M, Greb T. 2012. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences of the United States of America, 109, 14277–14277.
Akiyama K, Hayashi H. 2006. Strigolactones: Chemical signals for fungal symbionts and parasitic weeds in plant roots. Annals of Botany, 97, 925–931.
Bevan M, Shufflebottom D, Edwards K, Jefferson R, Schuch W. 1989. Tissue- and cell-specific activity of a phenylalanine ammonia-lyase promoter in transgenic plants. EMBO Journal, 8, 1899–1906.
Bouwmeester H J, Roux C, Lopez-Raez J A, Becard G. 2007. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends in Plant Science, 12, 224–230.
Burger M, Chory J. 2020. The many models of strigolactone signaling. Trends in Plant Science, 25, 395–405.
Dong L, Ishak A, Yu J, Zhao R, Zhao L. 2013. Identification and functional analysis of three MAX2 orthologs in Chrysanthemum. Journal of Integrative Plant Biology, 55, 434–442.
Druege U, Hilo A, Perez-Perez J M, Klopotek Y, Acosta M, Shahinnia F, Zerche S, Franken P, Hajirezaei M R. 2019. Molecular and physiological control of adventitious rooting in cuttings: Phytohormone action meets resource allocation. Annals of Botany, 123, 929–949.
Dun E A, Brewer P B, Beveridge C A. 2009. Strigolactones: Discovery of the elusive shoot branching hormone. Trends in Plant Science, 14, 364–372.
Dun E A, de Saint Germain A, Rameau C, Beveridge C A. 2013. Dynamics of strigolactone function and shoot branching responses in Pisum sativum. Molecular Plant, 6, 128–140.
Foo E, Yoneyama K, Hugill C J, Quittenden L J, Reid J B. 2013. Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Molecular Plant, 6, 76–87.
Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pages V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C, Bouwmeester H, Becard G, Beveridge C A, Rameau C, Rochange S F. 2008. Strigolactone inhibition of shoot branching. Nature, 455, 189–194.
He P, Wu S Y, Jiang Y L, Zhang L H, Tang M J, Xiao G H, Yu J N. 2019. GhYGL1d, a pentatricopeptide repeat protein, is required for chloroplast development in cotton. BMC Plant Biology, 19, 350.
He P, Xiao G H, Liu H, Zhang L H, Zhao L, Tang M J, Huang S, An Y J, Yu J N. 2018. Two pivotal RNA editing sites in the mitochondrial atp1 mRNA are required for ATP synthase to produce sufficient ATP for cotton fiber cell elongation. New Phytologist, 218, 167–182.
Iqbal N, Khan N A, Ferrante A, Trivellini A, Francini A, Khan M I R. 2017. Ethylene role in plant growth, development and senescence: Interaction with other phytohormones. Frontiers in Plant Science, 8, 475.
Ishida T, Kurata T, Okada K, Wada T. 2008. A genetic regulatory network in the development of trichomes and root hairs. Annual Review of Plant Biology, 59, 365–386.
Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J. 2005. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant & Cell Physiology, 46, 79–86.
Jiang L, Liu X, Xiong G S, Liu H H, Chen F L, Wang L, Meng X B, Liu G F, Yu H, Yuan Y D, Yi W, Zhao L H, Ma H L, He Y Z, Wu Z S, Melcher K, Qian Q, Xu H E, Wang Y H, Li J Y. 2014. DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature, 506, 401–405.
Jiang L X, Matthys C, Marquez-Garcia B, De Cuyper C, Smet L, De Keyser A, Boyer F D, Beeckman T, Depuydt S, Goormachtig S. 2016. Strigolactones spatially influence lateral root development through the cytokinin signaling network. Journal of Experimental Botany, 67, 379–389.
Johnson X, Brcich T, Dun E A, Goussot M, Haurogne K, Beveridge C A, Rameau C. 2006. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiology, 142, 1014–1026.
Kapulnik Y, Delaux P M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Sejalon-Delmas N, Combier J P, Becard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H. 2011a. Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 233, 209–216.
Kapulnik Y, Resnick N, Mayzlish-Gati E, Kaplan Y, Wininger S, Hershenhorn J, Koltai H. 2011b. Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. Journal of Experimental Botany, 62, 2915–2924.
Koltai H. 2011. Strigolactones’ ability to regulate root development may be executed by induction of the ethylene pathway. Plant Signaling & Behavior, 6, 1004–1005.
Kong X, Zhang M, Ding Z. 2014. D53: The missing link in strigolactone signaling. Molecular Plant, 7, 761–763.
Kuai J, Zhou Z, Wang Y, Meng Y, Chen B, Zhao W. 2015. The effects of short-term waterlogging on the lint yield and yield components of cotton with respect to boll position. European Journal of Agronomy, 67, 61–74.
Li W, Tran L S. 2015. Are karrikins involved in plant abiotic stress responses? Trends in Plant Science, 20, 535–538.
Liu G, Pfeifer J, Francisco R D, Emonet A, Stirnemann M, Gubeli C, Hutter O, Sasse J, Mattheyer C, Stelzer E, Walter A, Martinoia E, Borghi L. 2018. Changes in the allocation of endogenous strigolactone improve plant biomass production on phosphate-poor soils. New Phytologist, 217, 784–798.
Lopez-Obando M, Ligerot Y, Bonhomme S, Boyer F D, Rameau C. 2015. Strigolactone biosynthesis and signaling in plant development. Development, 142, 3615–3619.
Ma N, Wan L, Zhao W, Liu H F, Li J, Zhang C L. 2020. Exogenous strigolactones promote lateral root growth by reducing the endogenous auxin level in rapeseed. Journal of Integrative Agriculture, 19, 465–482.
Marzec M. 2017. Strigolactones and gibberellins: A new couple in the phytohormone world? Trends in Plant Science, 22, 813–815.
Mok D W, Mok M C. 2001. Cytokinin metabolism and action. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 89–118.
Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology, 56, 165–185.
Nelson D C, Flematti G R, Riseborough J A, Ghisalberti E L, Dixon K W, Smith S M. 2010. Karrikins enhance light responses during germination and seedling development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 107, 7095–7100.
Nelson D C, Scaffidi A, Dun E A, Waters M T, Flematti G R, Dixon K W, Beveridge C A, Ghisalberti E L, Smith S M. 2011. F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 108, 8897–8902.
Nemhauser J L, Mockler T C, Chory J. 2004. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biology, 2, E258.
Qin Y M, Zhu Y X. 2011. How cotton fibers elongate: A tale of linear cell-growth mode. Current Opinion in Plant Biology, 14, 106–111.
Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H. 2013. The biology of strigolactones. Trends in Plant Science, 18, 72–83.
Seto Y, Yamaguchi S. 2014. Strigolactone biosynthesis and perception. Current Opinion in Plant Biology, 21, 1–6.
Shen H, Zhu L, Bu Q Y, Huq E. 2012. MAX2 affects multiple hormones to promote photomorphogenesis. Molecular Plant, 5, 750–762.
Smith S M, Li J. 2014. Signalling and responses to strigolactones and karrikins. Current Opinion in Plant Biology, 21, 23–29.
Stirnberg P, van De Sande K, Leyser H M. 2002. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development, 129, 1131–1141.
Tang Y J, Liesche J. 2017. The molecular mechanism of shade avoidance in crops - How data from Arabidopsis can help to identify targets for increasing yield and biomass production. Journal of Integrative Agriculture, 16, 1244–1255.
Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. 1997. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.
Vanneste S, Friml J. 2009. Auxin: A trigger for change in plant development. Cell, 136, 1005–1016.
Wang L, Wang B, Yu H, Guo H, Lin T, Kou L, Wang A, Shao N, Ma H, Xiong G, Li X, Yang J, Chu J, Li J. 2020. Transcriptional regulation of strigolactone signalling in Arabidopsis. Nature, 583, 277–281.
Waters M T, Smith S M. 2013. KAI2- and MAX2-mediated responses to karrikins and strigolactones are largely independent of HY5 in Arabidopsis seedlings. Molecular Plant, 6, 63–75.
Xie X, Yoneyama K. 2010. The strigolactone story. Annual Review of Phytopathology, 48, 93–117.
Yamada Y, Furusawa S, Nagasaka S, Shimomura K, Yamaguchi S, Umehara M. 2014. Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta, 240, 399–408.
Yamaguchi S. 2008. Gibberellin metabolism and its regulation. Annual Review of Plant Biology, 59, 225–251.
Yoo S D, Cho Y H, Sheen J. 2007. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565–1572.
Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, et al. 2015. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 33, 531–537.
Zhang X, Rui Q Z, Li Y, Chen Y, Zhang X L, Chen D H, Song M Z. 2020. Architecture of stem and branch affects yield formation in short season cotton. Journal of Integrative Agriculture, 19, 680–689.
Zhou F, Lin Q B, Zhu L H, Ren Y L, Zhou K N, Shabek N, Wu F Q, Mao H B, Dong W, Gan L, Ma W W, Gao H, Chen J, Yang C, Wang D, Tan J J, Zhang X, Guo X P, Wang J L, Jiang L, et al. 2013. D14-SCFD3-dependent degradation of D53 regulates strigolactone signaling. Nature, 504, 406–410.
Zhu T, Liang C, Meng Z, Sun G, Meng Z, Guo S, Zhang R. 2017. CottonFGD: An integrated functional genomics database for cotton. BMC Plant Biology, 17, 101.
Zwanenburg B, Blanco-Ania D. 2018. Strigolactones: New plant hormones in the spotlight. Journal of Experimental Botany, 69, 2205–2218. |