Journal of Integrative Agriculture ›› 2017, Vol. 16 ›› Issue (06): 1197-1210.DOI: 10.1016/S2095-3119(16)61592-7
收稿日期:
2016-12-09
出版日期:
2017-06-20
发布日期:
2017-06-08
JIANG Rui1, 2, WANG Tong-tong1, SHAO Jin3, GUO Sheng1, ZHU Wei1, YU Ya-jun4, CHEN Shao-lin2, HATANO Ryusuke5
2 Biomass Energy Center for Arid and Semi-arid Lands,
3
4
Received:
2016-12-09
Online:
2017-06-20
Published:
2017-06-08
Contact:
WANG Tong-tong, Mobile: +86-18829841695, E-mail: tongtwang@163.com
About author:
JIANG Rui, Mobile: +86-15191864899, E-mail: jiangrui@nwsuaf.edu.cn
Supported by:
This study is supported by the National Natural Science Foundation of China (41201279 and 41301304) and the Shaanxi Science and Technology for Co-ordination and Innovation Project, China (2016KTZDNY03-06).
. [J]. Journal of Integrative Agriculture, 2017, 16(06): 1197-1210.
JIANG Rui, WANG Tong-tong, SHAO Jin, GUO Sheng, ZHU Wei, YU Ya-jun, CHEN Shao-lin, HATANO Ryusuke. Modeling the biomass of energy crops: Descriptions, strengths and prospective[J]. Journal of Integrative Agriculture, 2017, 16(06): 1197-1210.
Abedinpour M, Sarangi A, Rajput T B S, Singh M. 2014. Prediction of maize yield under future water availability scenarios using the AquaCrop model. The Journal of Agricultural Science, 152, 558–574.Ahmadi S H, Mosallaeepour E, Kamgar-Haghighi A A, Sepaskhah A R. 2015. Modeling maize yield and soil water content with aquacrop under full and deficit irrigation managements. Water Resources Management, 29, 2837–2853.Amichev B Y, Hangs R D, Van Rees K C. 2011. A novel approach to simulate growth of multi-stem willow in bioenergy production systems using a simple process based model (3PG). Biomass and Bioenergy, 35, 473–488.Beale C V, Long S P. 1995. Can perennial C4 grasses attain high efficiencies ofradiant energy-conversion in cool climates? Plant, Cell and Environment, 18, 641–650.Bondeau A, Smith P C, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-campen H, Müller C, Reichstein M, Smith B. 2007. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 13, 679–706.Borzecka-Walker M, Faber A, Syp A, Pudelko R, Mizak K. 2012. Simulation of greenhouse gases from miscanthus cultivation in Poland using the DNDC model. Journal of Food, Agriculture and Environment, 10, 1187–1190.Bradford K J, Hsiao T C. 1982. Physiological responses to moderate water stress. In: Physiological Plant Ecology. II. Springer, Berlin Heidelberg. pp. 263–324.van den Broek R, Vleeshouwers L, Hoogwijk M, van Wijk A, Turkenburg W. 2001. The energy crop growth model SILVA: Description and application to eucalyptus plantations in Nicaragua. Biomass and Bioenergy, 21, 335–349.Cabelguenne M, Debaeke P, Bouniols A. 1999. EPIC phase, a version of the EPIC model simulating the effects of water and nitrogen stress on biomass and yield, taking account of developmental stages: Validation on maize, sunflower, sorghum, soybean and winter wheat. Agricultural Systems, 60, 175–196.Clifton-Brown J C, Lewandowski I, Andersson B, Basch G, Christian D G, Kjeldsen J B, Jørgensene U, Mortensen J V, Riche A B, Schwarz K U, Tayebi K, Teixeira F. 2001a. Performance of 15 Miscanthus genotypes at five sites in Europe. Agronomy Journal, 93, 1013–1019.Clifton-Brown J C, Long S P, Jorgensen U. 2001b. Miscanthus productivity. In: Jones M B, Walsh M, eds., Miscanthus - For Energy and Fibre. James and James (Science Publishers), London. pp. 46–67.Clifton-Brown J C, Neilson B, Lewandowski I, Jones M B. 2000. The modelled productivity of Miscanthus×?giganteus (GREEF et DEU) in Ireland. Industrial Crops and Products, 12, 97–109.Clifton-Brown J C, Stampfl P F, Jones M B. 2004. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Global Change Biology, 10, 509–518.Collatz G J, Ribas-Carbo M, Berry J A. 1992. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Australian Journal of Plant Physiology, 19, 519–538.Dalgaard T, Jørgensen U, Olesen J E, Jensen E S, Kristensen E S. 2006. Looking at biofuels and bioenergy. Science, 312, 1743–1744. Davis S C, Parton W J, Del Grosso S J, Keough C, Marx E, Adler P R, DeLucia E H. 2012. Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. Frontiers in Ecology and the Environment, 10, 69–74.Deckmyn G, Laureysens I, Garcia J, Muys B, Ceulemans R. 2004. Poplar growth and yield in short rotation coppice: Model simulations using the process model SECRETS. Biomass and Bioenergy, 26, 221–227.Del Grosso S J, Parton W J, Keough C A, Reyes-Fox M. 2011. Special features of the DayCent modeling package and additional procedures for parameterization, calibration, validation, and applications. In: Methods of Introducing System Models into Agricultural Research. ASA, CSSA, SSSA, Madison Wisconsin. pp. 155–176.Demetriades-Shah T H, Fuchs M, Kanemasu E T, Flitcroft I. 1992. A note of caution concerning the relationship between cumulated intercepted solar radiation and crop growth. Agricultural and Forest Meteorology, 58, 193–207.Di Vittorio A V, Anderson R S, White J D, Miller N L, Running S W. 2010. Development and optimization of an Agro-BGC ecosystem model for C4 perennial grasses. Ecological Modelling, 221, 2038–2053.Dwivedi P, Wang W, Hudiburg T, Jaiswal D, Parton W, Long S, Delucia E, Khanna M. 2015. Cost of abating greenhouse gas emissions with cellulosic ethanol. Environmental Science & Technology, 49, 2512–2522.Forseth I, Norman J. 1991. Photosynthesis and productivity research in a changing nvironment. In: Modeling of Solar Irradiance, Leaf Energy Budget, and Canopy Photosynthesis. Chapman & Hall, London. pp. 207–219.Fosu M, Buah S S, Kanton R L, Agyare W A. 2012. Modeling maize response to mineral fertilizer on silty clay loam in the northern savanna zone of ghana using DSSAT model. In: Improving Soil Fertility Recommendations in Africa using the Decision Support System for Agrotechnology Transfer (DSSAT). Springer, Netherlands. pp. 157–168. Gassman P W, Williams J R, Wang X, Saleh A, Osei E, Hauck L M, Izaurralde R C, Flowers J. 2009. The Agricultural Policy Environmental EXtender (APEX) Model: An Emerging Tool for Landscape and Watershed Environmental Analyses. CARD Technical Reports. Paper 41.Gelfand I, Sahajpal R, Zhang X, Izaurralde R C, Gross K L, Robertson G P. 2013. Sustainable bioenergy production from marginal lands in the US Midwest. Nature, 493, 514–517.Gopalakrishnan G, Cristina Negri M, Salas W. 2012. Modeling biogeochemical impacts of bioenergy buffers with perennial grasses for a row-crop field in Illinois. Global Change Biology Bioenergy, 4, 739–750.Del Grosso S J, Mosier A R, Parton W J, Ojima D S. 2005. DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA. Soil and Tillage Research, 83, 9–24.Del Grosso S J, Ojima D S, Parton W J, Stehfest E, Heistemann M, DeAngelo B, Rose S. 2009. Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils. Global and Planetary Change, 67, 44–50.Hastings A, Clifton-Brown J, Wattenbach M, Mitchell C P, Smith P. 2009. The development of MISCANFOR, a new Miscanthus crop growth model: Towards more robust yield predictions under different climatic and soil conditions. Global Change Biology Bioenergy, 1, 154–170.Heng L K, Evett S R, Howell T A, Hsiao T C. 2009. Calibration and testing of FAO AquaCrop model for rainfed and irrigated maize. Agronomy Journal, 101, 488–498.Hsiao T C, Fereres E, Acevedo E, Henderson D W. 1976. Water stress and dynamics of growth and yield of crop plants. In: Lange O l, Kappen L, Schulze E D, eds., Ecological Studies. Analysis and Synthesis. Water and Plant Life. vol. 19. Springer-Verlag, Berlin. pp. 281–305. Hsiao T C. 1973. Plant responses to water stress. Annual Review of Plant Physiology, 24, 519–570.Hsiao T C, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E. 2009. AquaCrop - The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101, 448–459.Humphries S W, Long S P. 1995. WIMOVAC: A software package for modelling the dynamics of plant leaf and canopy photosynthesis. Computer Applications in the Biosciences (CABIOS), 11, 361–371.Inman-Bamber N G. 1991. A growth model for sugar-cane based on a simple carbon balance and the CERES-Maize water balance. South African Journal of Plant and Soil, 8, 93–99.Jain A K, Khanna M, Erickson M, Huang H. 2010. An integrated biogeochemical and economic analysis of bioenergy crops in the Midwestern United States. GCB Bioenergy, 2, 217–234.Jones J W, Antle J M, Basso B, Boote K J, Conant R T, Foster I, Godfray H C J, Herrero M, Howitt R E, Janssen S, Keating B A, Munoz-Carpena R, Porter C H, Rosenzweig C, Wheeler T R. 2016. Brief history of agricultural systems modeling.Agricultural Systems, doi: org/10.1016/j.agsy.2016.05.014Keating B A, Carberry P S, Hammer G L, Probert M E, Robertson M J, Holzworth D, Huth N I, Hargreaves J N G, Meinkeb H, Hochmana Z, McLeanb G, Verburgc K, Snowc V, Dimesa J P, Silburne M, Wangb E, Browna S, Bristowc K L, Assengf S, Chapmanb S, et al. 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18, 267–288.Keating B A, Robertson M J, Muchow R C, Huth N I. 1999. Modelling sugarcane production systems I. Development and performance of the sugarcane module. Field Crops Research, 61, 253–271.Khanna M, Dhungana B, Clifton-Brown J. 2008. Costs of producing miscanthus and switchgrass for bioenergy in Illinois. Biomass and Bioenergy, 32, 482–493.Khoshravesh M, Mostafazadeh-Fard B, Heidarpour M, Kiani A R. 2013. AquaCrop model simulation under different irrigation water and nitrogen strategies. Water Science and Technology, 67, 232–238.Kiniry J R, Cassida K A, Hussey M A, Muir J P, Ocumpaugh W R, Read J C, Reed R L, Sanderson M A, Venuto B C, Williams J R. 2005. Switchrgass simulation by the ALMANAC model at diverse sites in the southern US. Biomass and Bioenergy, 29,419–425.Kiniry J R, Sanderson M A, Williams J R Tischler C R, Hussey M A, Ocumpaugh W R, Reed J C, Esbroeck G V, Reed R L. 1996. Simulating Alamo switchgrass with the ALMANAC model. Agronomy Journal, 88, 602–606.Kiniry J R, Williams J R, Gassman P W, Debaeke P. 1992. A general, process oriented model for two competing plant species. Transactions of the American Society of Agricultural Engineers, 35, 801–810.Kotchenova S Y, Song X, Shabanov N V, Potter C S, Knyazikhin Y, Myneni R B. 2004. Lidar remote sensing for modeling gross primary production of deciduous forests. Remote Sensing of Environment, 92, 158–172.Kucharik C J. 2003. Evaluation of a process-based Agro-Ecosystem Model (Agro-IBIS) across the US corn belt: Simulations of the inter-annual variability in maize yield. Earth Interactions, 7, 1–33.Landsberg J J, Waring R H. 1997. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95, 209–228.Lasch P, Kollas C, Rock J, Suckow F. 2010. Potentials and impacts of short-rotation coppice plantation with aspen in Eastern Germany under conditions of climate change. Regional Environmental Change, 10, 83–94.Lee J, Pedroso G, Linquist B A, Putnam D, Kessel C, Six J. 2012. Simulating switchgrass biomass production across ecoregions using the DAYCENT model. GCB Bioenergy, 4, 521–533.Li C, Frolking S, Frolking T A. 1992. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research (Atmospheres), 97, 9759–9776.Liu W, Yan J, Li J, Sang T. 2012. Yield potential of Miscanthus energy crops in the Loess Plateau of China. GCB Bioenergy, 4, 545–554.Loomis R S, Amthor J S.1999. Yield potential, plant assimilatory capacity, and metabolic efficiencies. Crop Science, 39, 1584–1596.Luo Y, He C S, Sophocleous M, Yin Z F, Ren H, Zhu O. 2008. Assessment of crop growth and soil water modules in SWAT2000 using extensive field experiment data in an irrigated district of the Yellow River Basin. Journal of Hydrology, 352,139–156.Mabhaudhi T, Modi A T, Beletse Y G. 2014. Parameterisation and evaluation of the FAO-AquaCrop model for a South African taro (Colocasia esculenta L. Schott) landrace. Agricultural and Forest Meteorology, 192, 132–139.Marcelis L F M, Heuvelink E, Goudriaan J. 1998. Modelling biomass production and yield of horticultural crops: A review. Scientia Horticulturae, 74, 83–111.McLaughlin S B, Kiniry J R, Taliaferro C M, Ugarte D D. 2006. Projecting yield and utilization potential of switchgrass as an energy crop. In: Advances in Agronomy. vol. 90. Elsevier Academic Press, San Diego. pp. 267–297. Mendu V, Shearin T, Campbell J E, Stork J, Jae J, Crocker M, DeBolt S. 2012. Global bioenergy potential from high-lignin agricultural residue. Proceedings of the National Academy of Sciences of the United States of America, 109, 4014–4419.Mhizha T, Geerts S, Vanuytrecht E, Makarau A, Raes D. 2014. Use of the FAO AquaCrop model in developing sowing guidelines for rainfed maize in Zimbabwe. Water SA, 40, 233–244.Miguez F E, Maughan M, Bollero G A, Long S P. 2012. Modeling spatial and dynamic variation in growth, yield, and yield stability of the bioenergy crops Miscanthus×giganteus and Panicum virgatum across the conterminous United States. GCB Bioenergy, 1, 509–520.Miguez F E, Zhu X, Humphries S, Bollero G A, Long S P. 2009. A semimechanistic model predicting the growth and production of the bioenergy crop Miscanthus×giganteus: Description, parameterization and validation. GCB Bioenergy, 1, 282–296.Monsi M, Saeki T. 1953. The light factor in plant communities and its significance for dry matter production. Japanese Journal of Botany, 14, 22–52.Monteith J L. 1977. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London (Series B - Biological Sciences), 281, 277–294.Mu X, Chen G, Zhao K. 1992. A study of calculation of solar radiation over the Loess Plateau region and temporal and spatial distribution characteristics. In: Zhao M, ed., A Study of Energy-Water Balance and Agriculture Yield Potential Network Experiments. China Meteorological Press, Beijing. pp. 57–61. (in Chinese)Nair S S, Kang S, Zhang X, Miguez F E, Izaurralde R C, Post W M, Dietze M C, Lynd L R, Wullschleger S D. 2012. Bioenergy crop models: Descriptions, data requirements, and future challenges. GCB Bioenergy, 4, 620–633.Ng T L, Eheart J W, Cai X, Miguez F. 2010. Modeling miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environmental Science & Technology, 44, 7138–7144.Norman J M. 1980. Predicting photosynthesis for ecosystem models. In: Hesketh J D J, Jones J W, eds., Interfacing Leaf and Canopy Light Interception Models. CRC Press, Boca Raton, FL. pp. 49–67. Nyakudyaa I W, Stroosnijder L. 2014. Effect of rooting depth, plant density and planting date on maize (Zea mays L.)yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop. Agricultural Water Management, 146, 280–296.Parton W J, Hartman M, Ojima D, Schimel D. 1998. DAYCENT and its land surface submodel: Description and testing. Global and Planetary Change, 19, 35–48.Price L, Bullard M, Lyons H, Anthony S, Nixon P. 2004. Identifying the yield potential of Miscanthus×giganteus: An assessment of the spatial and temporal variability of M. giganteus biomass productivity across England and Wales. Biomass and Bioenergy, 26, 3–13.Qin Z, Zhuang Q, Chen M. 2012. Impacts of land use change due to biofuel crops on carbon balance, bioenergy production, and agricultural yield, in the conterminous United States. GCB Bioenergy, 4, 277–288.Qin Z, Zhuang Q, Zhu X. 2014. Carbon and nitrogen dynamics in bioenergy ecosystems: 1. Model development, validation and sensitivity analysis. GCB Bioenergy, 6, 740–755.Qin Z, Zhuang Q, Zhu X. 2015. Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions and global warming intensity in the conterminous United States. GCB Bioenergy, 7, 25–39.Raes D, Steduto P, Hsiao T C, Fereres E. 2009. AquaCrop —The FAO crop model to simulate yield response to water: II Main algorithms and software description. Agronomy Journal, 101, 438–477.Reddy S J. 1995. Over-emphasis on energy terms in crop yield models. Agricultural and Forest Meteorology, 77, 113–120.Ritchie J T, Kiniry J R, Jones C A, Dyke P T, 1986. Model inputs. In: Jones C A, Kiniry J R, eds., Ceres-Maize: A Simulation Model of Maize Growth and Development. Texas A&M University Press, College Station.Robertson A D, Davies C A, Smith P, Dondini M, McNamara N P. 2015. Modelling the carbon cycle of Miscanthus plantations: Existing models and the potential for their improvement. GCB Bioenergy, 7, 405–421.Sampson D A, Ceulemans R. 2000. SECRETS: Simulated carbon fluxes from a mixed coniferous/deciduous Belgian forest. In: Ceulemans R, Veroustraete F, Gond V, Van Rensbergen J B H F, eds., Forest Ecosystem Modeling, Upscaling and Remote Sensing. SPB Academic Publishing, Hague. pp. 95–108. Sampson D A, Janssens I A, Ceulemans R. 2001. Simulated soil CO2 efflux and net ecosystem exchange in a 70-year-old Belgian Scots pine stand using the process model SECRETS. Annals of Forest Science, 58, 31–46.Shrestha N, Raes D, Vanuytrecht E, Sah S K. 2013. Cereal yield stabilization in Terai (Nepal) by water and soil fertility management modeling. Agricultural Water Management, 122, 53–62.Steduto P, Hsiao T C, Raes D, Fereres E. 2009. AquaCrop - The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101, 426–437.Singels A, Bezuidenhout C N. 2002. A new method of simulating dry matter partitioning in the Canegro sugarcane model. Field Crops Research, 78, 151–164.Stöckle C O, Donatelli M, Nelson R. 2003. CropSyst, a cropping systems simulation model. European Journal of Agronomy, 18, 289–307.Stricevic R, Dzeletovic Z, Djurovic N, Cosic M. 2015. Application of the AquaCrop model to simulate the biomass of Miscanthus×giganteus under different nutrient supply conditions. GCB Bioenergy, 7, 1203–1210.Subash N, Shamim M, Singh V K, Gangwar B, Singh B, Gaydon D S, Roth C H, Poulton P L, Sikka A K. 2015. Applicability of APSIM to capture the effectiveness of irrigation management decisions in rice-based cropping sequence in the Upper-Gangetic Plains of India. Paddy and Water Environment, 13, 325–335.Tian S, Cacho J F, Youssef M A, Chescheir G M, Fischer M, Nettles J E, King J S. 2017. Switchgrass growth and pine-switchgrass interactions in established intercropping systems. GCB Bioenergy, 9, 845–857.Tian S, Youssef M A, Chescheir G M, Skaggs R W, Cacho J, Nettles J. 2016. Development and preliminary evaluation of an integrated field scale model for perennial bioenergy grass ecosystems in lowland areas. Environmental Modelling & Software, 84, 226–239.Tingem M, Rivington M, Bellocchi G, Colls J. 2009. Crop yield model validation for Cameroon. Theoretical and Applied Climatology, 96, 275–280.Vanuytrecht E, Raes D, Steduto P, Hsiao T C, Fereres E, Heng L K, Vila M G, Moreno P M. 2014. AquaCrop: FAO’s crop water productivity and yield response model. Environmental Modelling & Software, 62, 351–360.Williams J R, Jones C A, Dyke P T. 1984. The EPIC model and its application. Proceedings of the International Symposium on Minimum Data Sets for Agrotechnology Transfer. ICRISAT Center, India.Williams J R, Jones C A, Kiniry J R, Spanel D A. 1989. The EPIC crop growth model. Transactions of the American Society of Agricultural Engineers, 32, 497–511.Woo D K, Quijano J C, Kumar P, Chaoka S, Bernacchi C J. 2014. Threshold dynamics in soil carbon storage for bioenergy crops. Environmental Science & Technology, 48, 12090–12098.Zegada-Lizarazu W, Elbersen H W, Cosentino S L, Zatta A, Alexopoulou E, Monti A. 2010. Agronomic aspects of future energy crops in Europe. Biofuels, Bioproducts and Biorefining, 4, 674–691.Zhang W, Liu W, Xue Q, Chen J, Han X. 2013. Evaluation of the AquaCrop model for simulating yield response of winter wheat to water on the southern Loess Plateau of China. Water Science & Technology, 68, 821–828. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||