Badaeva E D, Amosova A V, Samatadze T E, Zoshchuk S A, Shostak N G, Chikida N N, Zelenin A V, Raupp W J, Friebe B, Gill B S. 2004. Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Systematics and Evolution, 246, 45–76.
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y H, Xia R. 2020. TBtools: An integrative Toolkit developed for interactive analyses of big biological data. Molecular Plant, 13, 1194–1202.
Chen W J, Fan X, Zhang B, Liu B L, Yan Z H, Zhang L Q, Yuan Z W, Zheng Y L, Zhang H G, Liu D C. 2012. Novel and ancient HMW glutenin genes from Aegilops tauschii and their phylogenetic positions. Genetic Resources & Crop Evolution, 59, 1649–1657.
Cui D, Wang J, Li M, Lu Y, Yan Y. 2019. Functional assessment and SNP-based molecular marker development of two 1Sl-encoded HMW glutenin subunits in Aegilops longissima L. Molecular Breeding, 39, 120.
Dai S, Zhao L, Xue X, Jia Y, Liu D, Pu Z, Zheng Y, Yan Z. 2015. Analysis of high-molecular-weight glutenin subunits in five amphidiploids and their parental diploid species Aegilops umbellulata and Aegilops uniaristata. Plant Genetic Resources, 13, 186–189.
Dai S F, Chen H X, Li H Y, Yang W J, Zhai Z, Liu Q Y, Li J, Yan Z H. 2022. Variations in the quality parameters and gluten proteins in synthetic hexaploid wheats solely expressing the Glu-D1 locus. Journal of Integrative Agriculture, 21, 1877–1885.
Dai S F, Xu D Y, Wen Z J, Song Z P, Yan Z H. 2018. Characterization of a novel 4.0-kb y-type HMW-GS from Eremopyrum distans. Cereal Research Communications, 46, 499–509.
Danilova T V, Friebe B, Gill B S. 2012. Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma, 121, 597–611.
Delorean E, Gao L L, Lopez J F C, Consortium T O W W, Wulff B, Ibba M I, Poland J. 2021. High molecular weight glutenin gene diversity in Aegilops tauschii demonstrates unique origin of superior wheat quality. Communications Biology, 4, 1242.
Du X, Jia Z, Yu Y, Wang S, Che B, Ni F, Bao Y. 2019. A wheat–Aegilops umbellulata addition line improves wheat agronomic traits and processing quality. Breeding Science, 69, 503–507.
Dvorak J, Luo M C, Yang Z L, Zhang H B. 1998. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theoretical and Applied Genetics, 97, 657–670.
Feng B, Xu Z B, Wang X, Jiang F, Zhao G J, Xiang C, Wang T. 2014. Molecular characterization of a novel HMW glutenin subunit Dx2.3*t from Aegilops tauschii. Cereal Research Communications, 42, 503–513.
Garg M, Tanaka H, Ishikawa N, Takata K, Tsujimoto H. 2009. A novel pair of HMW glutenin subunits from Aegilops searsii improves quality of hexaploid wheat. Cereal Chemistry, 86, 26–32.
Kimber G, Yen Y. 1988. Analysis of pivotal-differential evolutionary patterns. Proceedings of the National Academy of Sciences of the United States of America, 85, 9106–9108.
Guo L, Yu L, Tong J, Zhao Y, Yang Y, Ma Y, Cui L, Hu Y, Wang Z, Gao X. 2021. Addition of Aegilops geniculata 1Ug chromosome improves the dough rheological properties by changing the composition and micro-structure of gluten. Food Chemistry, 358, 129850.
Hao M, Luo J T, Yang M, Zhang L Q, Yan Z H, Yuan Z W, Zheng Y L, Zhang H G, Liu D C. 2011. Comparison of homoeologous chromosome pairing between hybrids of wheat genotypes Chinese Spring ph1b and Kaixian-luohanmai with rye. Genome, 54, 959–964.
Hou W, Wei F, Yu G, Du X, Ren M. 2017. Cloning and functional analysis of a novel x-type high-molecular-weight glutenin subunit with altered cysteine residues from Aegilops umbellulata. Crop & Pasture Science, 68, 409–414.
István M, Marta C, Annamária S, Elena B, Márta M. 2011. Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Annals of Botany, 107, 65–76.
Johansson E, Henriksson P, Svensson G, Heneen W K. 1993. Detection, chromosomal location and evaluation of the functional value of a novel high Mr glutenin subunit found in Swedish wheats. Journal of Cereal Science, 17, 237–245.
Lawrence G J, Shepherd K W. 1981. Chromosomal location of genes controlling seed proteins in species related to wheat. Theoretical and Applied Genetics, 59, 25–31.
Li J, Wan H S, Yang W Y. 2014. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. Journal of Systematics and Evolution, 52, 735–742.
Liu D C, Hao M, Li A L, Zhang L Q, Zheng Y L, Mao L. 2016. Allopolyploidy and interspecific hybridization for wheat improvement. In: Polyploidy and Hybridization for Crop Improvement. CRC Press, USA. pp. 27–52.
Liu Z, Yan Z, Wan Y, Liu K, Zheng Y, Wang D. 2003. Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species. Theoretical and Applied Genetics, 106, 1368–1378.
Ma C, Yang Y, Li X, Pei G, Yan Y. 2013. Molecular cloning and characterization of six novel HMW-GS genes from Aegilops speltoides and Aegilops kotschyi. Plant Breeding, 132, 284–289.
Margiotta B, Urbano M, Colaprico G, Johansson E, Buonocore F, D’Ovidio R, Lafiandra D. 1996. Detection of y-type subunit at the Glu-A1 locus in some Swedish bread wheat lines. Journal of Cereal Science, 23, 203–212.
Payne P I. 1987. Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annual Review of Plant Physiology, 38, 141–153.
Rawat N, Neelam K, Tiwari V K, Randhawa G S, Friebe B, Gill B S, Dhaliwal H S. 2011. Development and molecular characterization of wheat–Aegilops kotschyi addition and substitution lines with high grain protein, iron, and zinc. Genome, 54, 943–952.
Roy N, Islam S, Ma J, Lu M, Torok K, Tomoskozi S, Bekes F, Lafiandra D, Appels R, Ma W. 2018. Expressed Ay HMW glutenin subunit in Australian wheat cultivars indicates a positive effect on wheat quality. Journal of Cereal Science, 79, 494–500.
Roy N, Islam S, Yu Z, Lu M, Lafiandra D, Zhao Y, Anwar M, Mayer J E, Ma W. 2020. Introgression of an expressed HMW 1Ay glutenin subunit allele into bread wheat cv. Lincoln increases grain protein content and bread making quality without yield penalty. Theoretical and Applied Genetics, 133, 517–528.
Schneider A, Linc G, Molnár I, Molnár-Láng M. 2005. Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat–Aegilops biuncialis disomic addition lines. Genome, 48, 1070–1082.
Shavrukov Y. 2016. Comparison of SNP and CAPS markers application in genetic research in wheat and barley. BMC Plant Biology, 16, 47–51.
Singh J, Sheikh I, Sharma P, Kumar S, Dhaliwal H S. 2016. Transfer of HMW glutenin subunits from Aegilops kotschyi to wheat through radiation hybridization. Journal of Food Science & Technology, 53, 3543–3549.
Tang Z, Yang Z, Fu S. 2014. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa–535, pTa 71, CCS1, and pAWRC.1 for FISH analysis. Journal of Applied Genetics, 55, 313–318.
Waterhouse A M, Procter J B, Martin D, Clamp M, Barton G J. 2009. Jalview version 2: A multiple sequence alignment and analysis workbench. Bioinformatics, 25, 1189–1191.
Wu J S, Lu X B, Yu Z T, Han C X, Li X H, Prodanovic S, Yan Y M. 2017. Effects of Glu-1 and Glu-3 allelic variations on wheat glutenin macropolymer (GMP) content as revealed by size-exclusion high performance liquid chromatography (SE-HPLC). Genetika, 49, 677–691.
Xie R L, Wan Y F, Zhang Y, Wang D W. 2001. HMW glutenin subunits in multiploid Aegilops species: composition analysis and molecular cloning of coding sequences. Chinese Science Bulletin, 46, 309–313.
Yan Z H, Zheng Y L, Dai S F, Liu D C. 2005. Identification and molecular cloning of two novel y-type high-molecular-weight glutenin subunit genes from Aegilops variables. Acta Agriculturae Boreali-occidentalis Sinica, 14, 1–5. (in Chinese)
Yang W J, Shu H L, Yan Z H, Liu D C, Zhou Y H. 2005. Identification and molecular cytology analysis of novel wheat germplasm expressing seven high molecular weight glutenin subunits. Acta Genetica Sinica, 32, 1184–1190.(in Chinese)
Zhang H, Bian Y, Gou X, Dong Y, Rustgi S, Zhang B, Xu C, Li N, Qi B, Han F. 2013. Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation. Proceedings of the National Academy of Sciences of the United States of America, 110, 19466–19471.
Zhang Y, Hu M, Liu Q, Sun L, Chen X, Lv L, Liu Y, Jia X, Li H. 2018. Deletion of high-molecular-weight glutenin subunits in wheat significantly reduced dough strength and bread-baking quality. BMC Plant Biology, 18, 319.
Zhao L B, Xie D, Huang L, Zhang S J, Luo J T, Jiang B, Ning S Z, Zhang L Q, Yuan Z W, Wang J R, Zheng Y L, Liu D C, Hao M. 2021. Integrating the physical and genetic map of bread wheat facilitates the detection of chromosomal rearrangements. Journal of Integrative Agriculture, 20, 2333–2342.
Zhou J P, Yao C H, Yang E N, Yin M Q, Liu C, Ren Z L. 2014. Characterization of a new wheat–Aegilops biuncialis addition line conferring quality-associated HMW glutenin subunits. Genetics and Molecular Research, 13, 660–669.
|