Anderson O D, Bekes F. 2011. Incorporation of high-molecular-weight glutenin subunits into doughs using 2 gram mixograph and extensigraphs. Journal of Cereal Science, 54, 288–295.
Andres F, Coupland G. 2012. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics, 13, 627–639.
Bansal M, Adamski N M, Toor P I, Kaur S, Molnár I, Holušová K, Vrána J, Doležel J, Valárik M, Uauy C, Chhuneja P. 2020. Aegilops umbellulata introgression carrying leaf rust and stripe rust resistance genes Lr76 and Yr70 located to 9.47-Mb region on 5DS telomeric end through a combination of chromosome sorting and sequencing. Theoretical and Applied Genetics, 133, 903–915.
Bansal M, Kaur S, Dhaliwal H S, Bains N S, Bariana H S, Chhuneja P, Bansal U K. 2017. Mapping of Aegilops umbellulata-derived new leaf rust and stripe rust resistance loci in wheat. Plant Pathology, 66, 38–44.
Branlard G, Giraldo P, He Z H, Igrejas G, Ikeda T M, Janni M, Labuschagne M T, Wang D W, Wentzel B, Zhang K P. 2020. Contribution of genetic resources to grain storage protein composition and wheat quality. In: Igrejas G, Ikeda T M, Guzmán C, eds., Wheat Quality for Improving Processing and Human Health. Springer Publishing, Berlin. pp. 39–72.
Cane K, Eagles H A, Laurie D A, Trevaskis B, Vallance N, Eastwood R F, Gororo N N, Kuchel H, Martin P J. 2013. Ppd-B1 and Ppd-D1 and their effects in southern Australian wheat. Crop Pasture Science, 64, 100–114.
Chen F, Gao M X, Zhang J H, Zuo A H, Shang X L, Cui D Q. 2013. Molecular characterization of vernalization response genes in bread wheat from the Yellow and Huai valley of China. BMC Plant Biology, 13, 199.
Chhuneja P, Dhaliwal H S, Bains N S, Singh K. 2006. Aegilops kotschyi and Aegilops tauschii as sources for higher levels of grain iron and zinc. Plant Breeding, 125, 529–531.
Chhuneja P, Kaur S, Goel P K, Aghaee-Sarbarzeh M, Prashar M, Dhaliwal H S. 2008. Transfer of leaf rust and stripe rust resistance from Aegilops umbellulata Zhuk. to bread wheat (Triticum aestivum L.). Genetic Resources and Crop Evolution, 55, 849–859.
Dai S F, Chen H X, Li H Y, Yang W J, Zhai Z, Liu Q Y, Li J, Yan Z H. 2022. Variations in the quality parameters and gluten proteins in synthetic hexaploid wheats solely expressing the Glu-D1 locus. Journal of Integrative Agriculture, 21, 1877–1885.
Dai S F, Zhao L, Xue X F, Jia Y N, Liu D C, Pu Z J, Zheng Y L, Yan Z H. 2015. Analysis of high molecular weight glutenin subunits in five amphidiploids and their parental diploid species Aegilops umbellulata and Aegilops uniaristata. Plant Genetic Resources, 13, 186–189.
Dhaka V, Khatkar B S. 2015. Effects of gliadin/glutenin and HMW-GS/LMW-GS ratio on dough rheological properties and bread-making potential of wheat varieties. Journal of Food Quality, 38, 71–82.
Edae E A, Olivera P D, Jin Y, Poland J A, Rouse M N. 2016. Genotype-by-sequencing facilitates genetic mapping of a stem rust resistance locus in Aegilops umbellulata, a wild relative of cultivated wheat. BMC Genomics, 17, 1039.
Gupta P K, Balyan H S, Sharma S, Kumar R. 2021. Biofortification and bioavailability of Zn, Fe and Se in wheat: Present status and future prospects. Theoretical and Applied Genetics, 134, 1–35.
Hou W Q, Feng W, Yu G H, Du X Y, Ren M J. 2017. Cloning and functional analysis of a novel x-type high-molecular-weight glutenin subunit with altered cysteine residues from Aegilops umbellulata. Crop Pasture Science, 68, 409–414.
Kumar R, Kumar S, Sharma S, Kumar R. 2021. Genetics and breeding of Fe and Zn improvement in wheat. In: Wani S H, Mohan A, Singh G P, eds., Physiological, Molecular, and Genetic Perspectives of Wheat Improvement. Springer Publishing, Berlin. pp. 89–113.
Liu Z, Yan Z, Wan Y, Liu K, Zheng Y, Wang D. 2003. Analysis of HMW glutenin subunits and their coding sequences in two diploid Aegilops species. Theoretical and Applied Genetics, 106, 1368–1378.
Neelam K, Rawat N, Tiwari V K, Kumar S, Chhuneja P, Singh K, Randhawa G S, Dhaliwal H S. 2011. Introgression of group 4 and 7 chromosomes of Ae. peregrina in wheat enhances grain iron and zinc density. Molecular Breeding, 28, 623–634.
Okada M, Michikawa A, Yoshida K, Nagaki K, Ikeda T M, Takumi S. 2020. Phenotypic effects of the U-genome variation in nascent synthetic hexaploids derived from interspecific crosses between durum wheat and its diploid relative Aegilops umbellulata. PLoS ONE, 15, e0231129.
Rawat N, Tiwari V K, Neelam K, Randhawa G S, Chhuneja P, Singh K, Dhaliwal H S. 2009a. Development and characterization of Triticum aestivum–Aegilops kotschyi amphiploids with high grain iron and zinc contents. Plant Genetic Resources, 7, 271–280.
Rawat N, Tiwari V K, Singh N, Randhawa G S, Singh K, Chhuneja P, Dhaliwal H S. 2009b. Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genetic Resources and Crop Evolution, 56, 53–64.
Schaart J G, Salentijn E M J, Goryunova S V, Chidzanga C, Esselink D G, Gosman N, Bentley A R, Gilissen L J W J, Smulders M J M. 2021. Exploring the alpha-gliadin locus: the 33-mer peptide with six overlapping coeliac disease epitopes in Triticum aestivum is derived from a subgroup of Aegilops tauschii. The Plant Journal, 106, 86–94.
Schneider A, Molnár I, Molnár-Láng M. 2008. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica, 163, 1–19.
Sears E R. 1956. The transfer of leaf rust resistance from Aegilops umbellulata to wheat. Brookhaven Symposium in Biology, 9, 1–22.
Sharma P, Imran, Sharma P, Chugh V, Dhaliwal H S, Singh D. 2014. Morphological, cytological and biochemical characterization of wheat Aegilops longissima derivatives BC1F6 and BC2F4 with high grain micronutrient. International Journal of Agriculture Environment and Biotechnology, 7, 191–204.
Sharma P, Sheikh I, Singh D, Kumar S, Verma S K, Kumar R, Vyas P, Dhaliwal H S. 2017. Uptake, distribution, and remobilization of iron and zinc among various tissues of wheat–Aegilops substitution lines at different growth stages. Acta Physiologiae Plantarum, 39, 185.
Song Z P, Dai S F, Jia Y N, Zhao L, Kang L Z, Liu D C, Wei Y M, Zheng Y L, Yan Z H. 2019. Development and characterization of Triticum turgidum–Aegilops umbellulata amphidiploids. Plant Genetic Resources, 17, 24–32.
Stakman E C, Stewart D M, Loegering W Q. 1962. Identification of Physiologic Races of Puccinia graminis var. tritici. United State Department of Agriculture, Agriculture Research Service Bulletin.
Tiwari V K, Rawat N, Neelam K, Kumar S, Randhawa G S, Dhaliwal H S. 2010. Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theoretical and Applied Genetics, 121, 259–269.
Wang D W, Li D, Wang J J, Zhao Y, Wang Z J, Yue G D, Liu X, Qin H J, Zhang K P, Dong L L, Wang D W. 2017. Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes. Scientific Reports, 7, 44609.
Wang J, Wang C, Zhen S M, Li X H, Yan Y M. 2017. Low-molecular-weight glutenin subunits from the 1U genome of Aegilops umbellulata confer superior dough rheological properties and improve breadmaking quality of bread wheat. Journal of the Science of Food and Agriculture, 98, 2156–2167.
Wang S L, Shen X X, Ge P, Li J, Subburaj S, Li X H, Zeller F J, Hsam S L K, Yan Y M. 2012. Molecular characterization and dynamic expression patterns of two types of γ-gliadin genes from Aegilops and Triticum species. Theoretical and Applied Genetics, 7, 1371–1384.
Wang S W, Yin L N, Tanaka H, Tanaka K, Tsujimoto H. 2011. Wheat–Aegilops chromosome addition lines showing high iron and zinc contents in grains. Breeding Science, 61, 189–195.
Würschum T, Rapp M, Miedaner T, Longin C F H, Leiser W L. 2019. Copy number variation of Ppd-B1 is the major determinant of heading time in durum wheat. BMC Genetics, 20, 64.
Xiang Z G, Zhang L Q, Ning S Z, Zheng Y L, Liu D C. 2008. Evaluation of Aegilops tauschii for heading date and its gene location in a re-synthesized hexaploid wheat. Agricultural Sciences in China, 8, 1–7.
Ye X L, Li J, Cheng Y K, Yao F J, Long L, Yu C, Wang Y Q, Wu Y, Li J, Wang J R, Jiang Q T, Li W, Ma J, Wei Y M, Zheng Y L, Chen G Y. 2019. Genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in Sichuan wheat. BMC Plant Biology, 19, 147.
Zhang X F, Gao M X, Wang S S, Chen F, Cui D Q. 2015. Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.). Frontiers in Plant Science, 6, 470.
Zhu Z D, Zhou R H, Kong X Y, Dong Y C, Jia J Z. 2006. Microsatellite marker identification of a Triticum aestivum–Aegilops umbellulata substitution line with powdery mildew resistance. Euphytica, 150, 149–153.
|