Agafonov D E, Kastner B, Dybkov O, Hofele R V, Liu W T, Urlaub H, Luhrmann R, Stark H. 2016. Molecular architecture of the human U4/U6.U5 tri-snRNP. Science, 351, 1416–1420.
Bai G H, Shaner G. 2004. Management and resistance in wheat and barley to Fusarium head blight. Annual Review of Phytopathology, 42, 135–161.
Bertram K, Agafonov D E, Dybkov O, Haselbach D, Leelaram M N, Will C L, Urlaub H, Kastner B, Luhrmann R, Stark H. 2017. Cryo-EM structure of a pre-catalytic human spliceosome primed for activation. Cell, 170, 701–713.
Boenisch M J, Schäfer W. 2011. Fusarium graminearum forms mycotoxin producing infection structures on wheat. Bmc Plant Biology, 11, 110.
Boesler C, Rigo N, Anokhina M M, Tauchert M J, Agafonov D E, Kastner B, Urlaub H, Ficner R, Will C L, Luhrmann R. 2016. A spliceosome intermediate with loosely associated tri-snRNP accumulates in the absence of Prp28 ATPase activity. Nature Communications, 7, 11997.
Bottner C A, Schmidt H, Vogel S, Michele M, Kaufer N F. 2005. Multiple genetic and biochemical interactions of Brr2, Prp8, Prp31, Prp1 and Prp4 kinase suggest a function in the control of the activation of spliceosomes in Schizosaccharomyces pombe. Current Genetics, 48, 151–161.
Brown N A, Urban M, van de Meene A M, Hammond-Kosack K E. 2010. The infection biology of Fusarium graminearum: defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biology, 114, 555–571.
Bruno K S, Tenjo F, Li L, Hamer J E, Xu J R. 2004. Cellular localization and role of kinase activity of PMK1 in Magnaporthe grisea. Eukaryotic Cell, 3, 1525–1532.
Cuomo C A, Gueldener U, Xu J R, Trail F, Turgeon B G, Di Pietro A, Walton J D, Ma L J, Baker S E, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang Y L, DeCaprio D, Gale L R, Gnerre S, Goswami R S, Hammond-Kosack K, et al. 2007. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science, 317, 1400–1402.
Dou K, Huang C F, Ma Z Y, Zhang C J, Zhou J X, Huang H W, Cai T, Tang K, Zhu J K, He X J. 2013. The PRP6-like splicing factor STA1 is involved in RNA-directed DNA methylation by facilitating the production of Pol V-dependent scaffold RNAs. Nucleic Acids Research, 41, 8489–8502.
Galisson F, Legrain P. 1993. The biochemical defects of prp4-1 and prp6-1 yeast splicing mutants reveal that the PRP6 protein is required for the accumulation of the [U4/U6.U5] tri-snRNP. Nucleic Acids Research, 21, 1555–1562.
Gao X, Jin Q, Jiang C, Li Y, Li C, Liu H, Kang Z, Xu J R. 2016. FgPrp4 kinase is important for spliceosome B-complex activation and splicing efficiency in Fusarium graminearum. PLoS Genetics, 12, e1005973.
Gao X, Zhang J, Song C, Yuan K, Wang J, Jin Q, Xu J R. 2018. Phosphorylation by Prp4 kinase releases the self-inhibition of FgPrp31 in Fusarium graminearum. Current Genetics, 64, 1261–1274.
Hou Z M, Xue C Y, Peng Y L, Katan T, Kistler H C, Xu J R. 2002. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Molecular Plant–Microbe Interactions, 15, 1119–1127.
Hu S, Zhou X, Gu X, Cao S, Wang C, Xu J R. 2014. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum. Molecular Plant–Microbe Interactions, 27, 557–566.
Jenczmionka N J, Maier F J, Losch A P, Schafer W. 2003. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Current Genetics, 43, 87–95.
Li X, Fan Z, Yan M, Qu J, Xu J R, Jin Q. 2019. Spontaneous mutations in FgSAD1 suppress the growth defect of the Fgprp4 mutant by affecting tri-snRNP stability and its docking in Fusarium graminearum. Environmental Microbiology, 21, 4488–4503.
Liu H, Wang Q, He Y, Chen L, Hao C, Jiang C, Li Y, Dai Y, Kang Z, Xu J R. 2016. Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes. Genome Research, 26, 499–509.
Liu S, Li P, Dybkov O, Nottrott S, Hartmuth K, Luhrmann R, Carlomagno T, Wahl M C. 2007. Binding of the human Prp31 Nop domain to a composite RNA-protein platform in U4 snRNP. Science, 316, 115–120.
Liu S B, Rauhut R, Vornlocher H P, Luhrmann R. 2006. The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP. Rna - A Publication of the Rna Society, 12, 1418–1430.
Lutzelberger M, Bottner C A, Schwelnus W, Zock-Emmenthal S, Razanau A, Kaufer N F. 2010. The N-terminus of Prp1 (Prp6/U5-102 K) is essential for spliceosome activation in vivo. Nucleic Acids Research, 38, 1610–1622.
Makarov E M, Makarova O V, Achsel T, Luhrmann R. 2000. The human homologue of the yeast splicing factor Prp6p contains multiple TPR elements and is stably associated with the U5 snRNP via protein–protein interactions. Journal of Molecular Biology, 298, 567–575.
Nguyen T H, Galej W P, Bai X C, Oubridge C, Newman A J, Scheres S H, Nagai K. 2016. Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 A resolution. Nature, 530, 298–302.
Ohi M D, Ren L, Wall J S, Gould K L, Walz T. 2007. Structural characterization of the fission yeast U5.U2/U6 spliceosome complex. Proceedings of the National Academy of Sciences of the United States of America, 104, 3195–3200.
Proctor R H, Hohn T M, Mccormick S P. 1995. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Molecular Plant–Microbe Interactions, 8, 593–601.
Schneider M, Hsiao H H, Will C L, Giet R, Urlaub H, Luhrmann R. 2010. Human PRP4 kinase is required for stable tri-snRNP association during spliceosomal B complex formation. Nature Structural & Molecular Biology, 17, 216–221.
Son H, Seo Y S, Min K, Park A R, Lee J, Jin J M, Lin Y, Cao P, Hong S Y, Kim E K, Lee S H, Cho A, Lee S, Kim M G, Kim Y, Kim J E, Kim J C, Choi G J, Yun S H, Lim J Y, Kim M, et al. 2011. A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PLoS Pathogens, 7, e1002310.
Sun M, Zhang Y, Wang Q, Wu C, Jiang C, Xu J R. 2018. The tri-snRNP specific protein FgSnu66 is functionally related to FgPrp4 kinase in Fusarium graminearum. Molecular Microbiology, 109, 494–508.
Wang C, Zhang S, Hou R, Zhao Z, Zheng Q, Xu Q, Zheng D, Wang G, Liu H Q, Gao X, Ma J W, Kistler H C, Kang Z S, Xu J R. 2011. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathogens, 7, e1002460.
Will C L, Luhrmann R. 2011. Spliceosome structure and function. Cold Spring Harbor Perspectives in Biology, 3, a003707.
Xu Y B, Li H P, Zhang J B, Song B, Chen F F, Duan X J, Xu H Q, Liao Y C. 2010. Disruption of the chitin synthase gene CHS1 from Fusarium asiaticum results in an altered structure of cell walls and reduced virulence. Fungal Genetics and Biology, 47, 205–215.
Yun Y, Liu Z, Yin Y, Jiang J, Chen Y, Xu J R, Ma Z. 2015. Functional analysis of the Fusarium graminearum phosphatome. New Phytologist, 207, 119–134.
Zhang Y, Gao X, Sun M, Liu H, Xu J R. 2017. The FgSRP1 SR-protein gene is important for plant infection and pre-mRNA processing in Fusarium graminearum. Environmental Microbiology, 19, 4065–4079.
Zhao X H, Xu J R. 2007. A highly conserved MAPK-docking site in Mst7 is essential for Pmk1 activation in Magnaporthe grisea. Molecular Microbiology, 63, 881–894.
Zheng D, Zhang S, Zhou X, Wang C, Xiang P, Zheng Q, Xu J R. 2012. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLoS ONE, 7, e49495.
Zhou X, Li G, Xu J R. 2011. Efficient approaches for generating GFP fusion and epitope-tagging constructs in filamentous fungi. Methods in Molecular Biology, 722, 199–212.
Zhou X, Zhang H, Li G, Shaw B, Xu J R. 2012. The cyclase-associated protein Cap1 is important for proper regulation of infection-related morphogenesis in Magnaporthe oryzae. PLoS Pathogens, 8, e1002911.
Zhou X Y, Liu W D, Wang C F, Xu Q J, Wang Y, Ding S L, Xu J R. 2011. A MADS-box transcription factor MoMcm1 is required for male fertility, microconidium production and virulence in Magnaporthe oryzae. Molecular Microbiology, 80, 33–53.
|