Journal of Integrative Agriculture ›› 2021, Vol. 20 ›› Issue (6): 1660-1673.DOI: 10.1016/S2095-3119(20)63277-4

所属专题: 农业生态环境-肥料及施用合辑Agro-ecosystem & Environment—Fertilizer 农业生态环境-氮素合辑Agro-ecosystem & Environment—Nitrogen

• 论文 • 上一篇    下一篇

  

  • 收稿日期:2020-02-18 出版日期:2021-06-01 发布日期:2021-05-19

Synergistic effect of Si and K in improving the growth, ion distribution and partitioning of Lolium perenne L. under saline-alkali stress

FAN Yuan1, 2, SHEN Wu-yan1, Pino VANESSA2, CHENG Fang-qin1    

  1. 1 Institute of Resources and Environmental Engineering, Shanxi University/State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Taiyuan 030006, P.R.China
    2 Sydney Institute of Agriculture, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
  • Received:2020-02-18 Online:2021-06-01 Published:2021-05-19
  • Contact: Correspondence CHENG Fang-qin, E-mail: cfangqin@sxu.edu.cn
  • Supported by:
    his work was supported by the National Natural Science Foundation of China (31701369), the China Scholarship Council (201808140009), the Natural Science Foundation of Shanxi Province, China (201701D221218), and the Bidding Project of Shanxi Province, China (20191101007).

摘要:

施加硅或钾已经被证明对盐碱胁迫下植物的生长具有促进作用。但是,硅和钾对盐碱胁迫下植物生长、离子分布和区隔化的协同调控效应还不清楚。本研究对不同盐碱水平下的黑麦草生长和离子选择性吸收特性进行研究。低盐碱胁迫下,当硅单独施加或与钾联合施用时黑麦草的生长参数显著提高。高盐碱胁迫下,只有硅和钾联合施用黑麦草的生长才有显著提高。当硅和钾联合施用时,根、茎和叶部的K+/Na+比和 Ca2+/Na+比相较单独施用有显著提高。同时,叶片的液泡、细胞壁和细胞器中的K+Ca2+含量均有显著提高,这是因为施加的K+与溶液中的Na+形成竞争,从而维持植物的渗透势和叶片的含水量。当硅和钾同时施用时,Na+的浓度降低并主要累积在可溶性溶质和细胞壁中。当硅和钾联合施用时,黑麦草中的硅浓度显著提高,并主要累积在细胞壁和可溶性溶质中,从而有助于叶绿素的合成,缓解质膜损伤和增加盐碱胁迫下的水分吸收。该研究证实了不同盐碱胁迫下硅和钾对植物生长的协同调控作用,同时为硅钾肥的生产和在盐碱土的应用提供理论指导。


Abstract:

The application of Si or K has proven to be beneficial for the growth of plants under saline-alkali stress.  However, the synergistic effect of Si and K in improving the growth, ion distribution, and partitioning in Lolium perenne L. under saline-alkali stress remains unclear.  In this study, the growth characteristics and ion-selective absorption of ryegrass (Lolium perenne L.) exposed to different levels of saline-alkali stress were evaluated.  The growth parameters of ryegrass were significantly improved when Si was applied by itself or coupled with K under low saline-alkali stress.  Under a high saline-alkali level, only simultaneous application of Si and K could significantly improve the growth of ryegrass.  When Si and K were applied together, the K+/Na+ and Ca2+/Na+ ratios in root, stem, and leaf of ryegrass were maximally improved as compared to the individual treatments and control.  The K+ and Ca2+ concentrations in the vacuole, cell wall, and organelle of leaf were increased dramatically.  This improvement was due to the ability of applied ions to compete with Na+, allowing the plant to maintain osmotic potential and leaf water content.  The concentration of Na+ was significantly reduced when Si and K were applied and mainly concentrated in the soluble fraction and cell wall.  The Si concentration in ryegrass increased markedly by the combined application of Si and K, and most of it was accumulated in the cell wall and soluble fraction, which could help in chlorophyll synthesis, reduce membrane injury, and increase water absorption under saline-alkali stress.  This study emphasized the advantage of Si and/or K on the growth of plants under different saline-alkaline levels and provided a guide for the production of Si-K fertilizer and its application in saline-alkali soil. 

Key words: saline-alkali stress ,  Si ,  K ,  ryegrass plants , K+/Na+ ,  compartmentation