Journal of Integrative Agriculture ›› 2021, Vol. 20 ›› Issue (2): 363-370.DOI: 10.1016/S2095-3119(20)63363-9

• 论文 • 上一篇    下一篇

  

  • 收稿日期:2020-04-07 出版日期:2021-02-01 发布日期:2021-01-28

Reducing maize yield gap by matching plant density and solar radiation

LIU Guang-zhou1*, LIU Wan-mao2*, HOU Peng1, MING Bo1, YANG Yun-shan2, GUO Xiao-xia2, XIE Rui-zhi1, WANG Ke-ru1, LI Shao-kun1   

  1. 1 Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture and Rural Affairs/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R.China 
    2 The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps/College of Agronomy, Shihezi Univerisy, Shihezi 832000, P.R.China
  • Received:2020-04-07 Online:2021-02-01 Published:2021-01-28
  • Contact: Correspondence LI Shao-kun, Tel/Fax: +86-10-82108891, E-mail: lishaokun@caas.cn; HOU Peng, Tel/Fax: +86-10-82108595, E-mail: houpeng@caas.cn
  • About author:LIU Guang-zhou, Tel: +86-10-82108595, E-mail: liugz89@163.com;
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2016YFD0300110, 2016YFD0300101), the National Natural Science Foundation of China (31871558) and the National Basic Research Program of China (973 Program, 2015CB150401).

Abstract: Yield gap exists because the current attained actual grain yield cannot yet achieve the estimated yield potential. Chinese high yield maize belt has a wide span from east to west which results in different solar radiations between different regions and thus different grain yields. We used multi-site experimental data, surveyed farmer yield data, the highest recorded yield data in the literatures, and simulations with Hybrid-Maize Model to assess the yield gap and tried to reduce the yield gap by matching the solar radiation and plant density. The maize belt was divided into five regions from east to west according to distribution of accumulated solar radiation. The results showed that there were more than 5.8 Mg ha–1 yield gaps between surveyed farmer yield and the yield potential in different regions of China from east to west, which just achieved less than 65% of the yield potential. By analyzing the multi-site density experimental data, we found that the accumulated solar radiation was significantly correlated to optimum plant density which is the density with the highest yield in the multi-site density experiment (y=0.09895x–32.49, P<0.01), according to which the optimum plant densities in different regions from east to west were calculated. It showed that the optimum plant density could be increased by 60.0, 55.2, 47.3, 84.8, and 59.6% compared to the actual density, the grain yield could be increased by 20.2, 18.3, 10.9, 18.1, and 15.3% through increasing plant density, which could reduce the yield gaps of 33.7, 23.0, 13.4, 17.3, and 10.4% in R (region)-1, R-2, R-3, R-4, and R-5, respectively. This study indicates that matching maize plant density and solar radiation is an effective approach to reduce yield gaps in different regions of China.

Key words: maize , yield gap , yield potential , matching density and radiation