Aiello D, Patel K, Lasagna E. 2018. The myostatin gene: An overview of mechanisms of action and its relevance to livestock animals. Animal Genetics, 20, 12696.
Boman I A, Klemetsdal G, Blichfeldt T, Nafstad O, Våge D I. 2009. A frameshift mutation in the coding region of the myostatin gene (MSTN) affects carcass conformation and fatness in Norwegian White sheep (Ovis aries). Animal Genetics, 40, 418–422.
Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong J W, Xi J J. 2013. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Research, 23, 465–472.
Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, Bouix J, Caiment F, Elsen J M, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genetics, 38, 813–818.
Cong L, Ran F A, Cox D, Lin S, Barretto R, Haibb N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.
Feng C, Yuan J, Wang R, Liu Y, Birchler J A, Han F. 2016. Efficient target genome modification in maize using CRISPR/Cas9 system. Journal of Genetics and Genomics, 43, 37–43.
Fu Y, Foden J A, Khayter C, Maeder M L, Reyon D, Joung J K, Sander J D. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31, 822–826.
Fu Y, Sander J D, Reyon D, Reyon D, Cascio V M, Joung J K. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 32, 279–284.
Grobet L, Martin L J, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 17, 71.
Heo Y T, Quan X, Xu Y N, Baek S, Choi H, Kim N H, Kim J. 2015. CRISPR/Cas9 nuclease-mediated gene knock-in in bovine-induced pluripotent cells. Stem Cells and Development, 24, 393–402.
Hsu P D, Lander E S, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157, 1262–1278.
Hsu P D, Scott D A, Weinstein J A, Ran F A, Konermann S, Agarwala V, Li Y, Fine E J, Wu X, Shalem O, Cradick T J, Marraffini L A, Bao G, Zhang F. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31, 827–832.
Jako?iūnas T, Bonde I, Herrgård M, Harrison S J, Kristensen M, Pedersen L E, Jensen M K, Keasling J D. 2015. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metabolic Engineering, 28, 213–222.
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821.
Kambadur R, Sharma M, Smith T P, Bass J J. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Research, 7, 910–916.
Li T, Huang S, Jiang W Z, Wright D, Spalding M H, Weeks D P, Yang B. 2011. TAL nucleases (TALNs): Hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Research, 39, 359–372.
Liu D, Wang Z, Xiao A, Zhang Y, Li W, Zu Y, Yao S, Lin S, Zhang B. 2014. Efficient gene targeting in zebrafish mediated by a zebrafish-codon-optimized cas9 and evaluation of off targeting effect. Journal of Genetics and Genomics, 41, 43–46.
Liu H, Liu C, Zhao Y H, Han X J, Wang C, Zhou Z W. 2018. Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts. Journal of Integrative Agriculture, 17, 406-414.
Liu X, Wang Y, Guo W, Chang B, Liu J, Guo Z, Quan F, Zhang Y. 2013. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the β-casein locus in cloned cows. Nature Communications, 4, 2565.
Mali P, Aach J, Stranges P B, Esvelt K M, Moosburner M, Kosuri S, Yang L, Church G M. 2013. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology, 31, 833–838.
Mali P, Yang L, Esvelt K M, Aach J, Guell M, Dicarlo J E, Norville J E, Church G M. 2013. RNA-guided human genome engineering via Cas9. Science, 339, 823–826.
Montague T G, Cruz J M, Gagnon J A, Church G M, Valen E. 2014. CHOPCHOP: aCRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Research, 42, W401–W407.
Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, Polejaeva I A, Chen C. 2014. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS ONE, 9, e106718.
O’Geen H, Henry I M, Bhakta M S, Meckler J F, Segal D J. 2015. A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Research, 43, 3389–3404.
Pattanayak V, Lin S, Guilinger J P, Ma E, Doudna J A, Liu D R. 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nature Biotechnology, 31, 839–843.
Proudfoot C, Carlson D F, Huddart R, Long C R, Pryor J H, King T J, Lillico S G, Mileham A J, McLaren D G, Whitelaw C B, Fahrenkrug S C. 2015. Genome edited sheep and cattle. Transgenic Research, 24, 147–153.
Ramakrishna S, Kwaku Dad A B, Beloor J, Gopalappa R, Lee S K, Kim H. 2014. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Research, 24, 1020–1027.
Shen B, Zhang W, Zhang J, Zhou J, Wang J, Chen L, Wang L, Hodgkins A, Iyer V, Huang X, Skarnes W C. 2014. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nature Methods, 11, 399–402.
Wu H, Wang Y, Zhang Y, Yang M, Lv J, Liu J, Zhang Y. 2015. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 112, E1530–E1539.
Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, Zhang B. 2014. CasOT: A genome-wide Cas9/gRNA off-target searching tool. Bioinformatics, 30, 1180–1182.
Zhao Y, Liang H, Liu M, Li X. 2014. The application of gene knock-out technologies in big domestic animals. Acta Veterinaria et Zootechnica Sinica, 45, 1–8. (in Chinese)
Zhou H, He M, Li J, Chen L, Huang Z F, Zheng S Y, Zhu L Y, Ni E, Jiang D G, Zhao B R, Zhuang C X. 2016. Development of commercial Thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Scientific Reports, 6, 37395–37406.
Zhou X, Xin J, Fan N, Zou Q, Huang J, Ouyang Z, Zhao Y, Zhao B, Liu Z, Lai S, Yi X, Guo L, Esteban M A, Zeng Y, Yang H, Lai L. 2015. Generation of CRISPR/Cas9-mediated gene targeted pigs via somatic cell nuclear transfer. Cellular and Molecular Life Sciences, 72, 1175–1184. |