Arvor D, Jonathan M, Meirelles M S P, Dubreuil V, Durieux L. 2011. Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. International Journal of Remote Sensing, 32, 7847–7871. Bradley B A, Jacob R W, Hermance J F, Mustard J F. 2007. A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data. Remote Sensing of Environment, 106, 137–145.Brown J C, Jepson W E, Kastens J H, Wardlow B D, Lomas J M, Price K P. 2007. Multitemporal, moderate-spatial-resolution remote sensing of modern agricultural production and land modification in the Brazilian Amazon. GIScience & Remote Sensing, 44, 117–148. Brown J F, Loveland T R, Merchant J W, Reed B C, Ohlen D O. 1993. Using multisource data in global land-cover characterization: Concepts, requirements, and methods. Photogrammetric Engineering and Remote Sensing, 59, 977–987.Chu L, Liu G H, Huang C, Liu Q S. 2014. Phenology detection of winter wheat in the Yellow River delta using MODIS NDVI time-series data. In: Agro-geoinformatics (Agro-geoinformatics 2014), International Conference on Agro-Geoinformatics. IEEE, Beijing, China. pp. 1–5. Colditz R R, Conrad C, Wehrmann T, Schmidt M, Dech S. 2008. TiSeG: A flexible software tool for time-series generation of MODIS data utilizing the quality assessment science data set. IEEE Transactions on Geoscience and Remote Sensing, 46, 3296–3308. Doraiswamy P C, Hatfield J L, Jackson T J, Akhmedov B, Prueger J, Stern A. 2004. Crop condition and yield simulations using Landsat and MODIS. Remote Sensing of Environment, 92, 548–559. Duchemin B, Goubier J, Courrier G. 1999. Monitoring phenological key stages and cycle duration of temperate deciduous forest ecosystems with NOAA/AVHRR data. Remote Sensing of Environment, 67, 68–82. Eastman J R, Filk M. 1993. Long sequence time series evaluation using standardized principal components. Photogrammetric Engineering and Remote Sensing, 59, 991–996.Fan X, Pedroli B, Liu G, Liu H, Song C, Shu L. 2011. Potential plant species distribution in the Yellow River Delta under the influence of groundwater level and soil salinity. Ecohydrology, 4, 744–756. Fan X, Pedroli B, Liu G, Liu Q, Liu H, Shu L. 2012. Soil salinity development in the yellow river delta in relation to groundwater dynamics. Land Degradation & Development, 23, 175–189.Ferreira L G, Huete A R. 2004. Assessing the seasonal dynamics of the Brazilian Cerrado vegetation through the use of spectral vegetation indices. International Journal of Remote Sensing, 25, 1837–1860.Ferreira L G, Yoshioka H, Huete A, Sano E E. 2003. Seasonal landscape and spectral vegetation index dynamics in the Brazilian Cerrado: An analysis within the Large-Scale Biosphere-Atmosphere Experiment in Amazônia (LBA). Remote Sensing of Environment, 87, 534–550.Fisher J I, Mustard J F. 2007. Cross-scalar satellite phenology from ground, Landsat, and MODIS data. Remote Sensing of Environment, 109, 261–273.Fisher J I, Mustard J F, Vadeboncoeur M A. 2006. Green leaf phenology at Landsat resolution: Scaling from the field to the satellite. Remote Sensing of Environment, 100, 265–279. Fritz S, Massart M, Savin I, Gallego J, Rembold F. 2008. The use of MODIS data to derive acreage estimations for larger fields, A case study in the south-western Rostov region of Russia. International Journal of Applied Earth Observation and Geoinformation, 10, 453–466. Galford G L, Mustard J F, Melillo J, Gendrin A, Cerri C C, Cerri C E. 2008. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sensing of Environment, 112, 576–587. Heumann B W, Seaquist J W, Eklundh L, Jönsson P. 2007. AVHRR derived phenological change in the Sahel and Soudan, Africa, 1982–2005. Remote Sensing of Environment, 108, 385–392. Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213. Jönsson P, Eklundh L. 2004. TIMESAT - A program for analyzing time-series of satellite sensor data. Computers & Geosciences, 30, 833–845. Levenberg K. 1944. A method for the solution of certain problems in least squares. Quarterly of Applied Mathematics, 2, 164–168.Li Q, Wu B, Jia K, Dong Q, Eerens H, Zhang M. 2011. Maize acreage estimation using ENVISAT MERIS and CBERS-02B CCD data in the North China Plain. Computers and Electronics in Agriculture, 78, 208–214. Liu G H, Drost H J. 1997. Atlas of the Yellow River Delta. Publishing House of Surveying and Mapping, Beijing, China. (in Chinese)Lloyd D. 1990. A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Remote Sensing, 11, 2269–2279.Lu L, Wang C, Guo H, Li Q. 2014. Detecting winter wheat phenology with SPOT-VEGETATION data in the North China Plain. Geocarto International, 29, 244–255. Lunetta R S, Knight J F, Ediriwickrema J, Lyon J G, Worthy L D. 2006. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sensing of Environment, 105, Marquardt D W. 1963. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial & Applied Mathematics, 11, 431–441. McKellip R, Prados D, Ryan R, Ross K, Spruce J, Gasser G, Greer R. 2008. Remote-Sensing Time Series Analysis, A Vegetation Monitoring Tool. Nasa Tech Briefs, USA. pp. 25–26.Mingwei Z, Qingbo Z, Zhongxin C, Jia L, Yong Z, Chongfa C. 2008. Crop discrimination in Northern China with double cropping systems using Fourier analysis of time-series MODIS data. International Journal of Applied Earth Observation and Geoinformation, 10, 476–485. Morton D C, DeFries R S, Shimabukuro Y E, Anderson L O, Arai E, del Bon Espirito-Santo F, Freitas R, Morisette J. 2006. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proceedings of the National Academy of Sciences of the United States in America, 103, 14637–14641. Nordberg M L, Evertson J. 2003. Monitoring change in mountainous dry-heath vegetation at a regional scale using multitemporal landsat TM data. AMBIO: A Journal of the Human Environment, 32, 502–509. Peña-Barragán J M, Ngugi M K, Plant R E, Six J. 2011. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sensing of Environment, 115, 1301–1316. Potgieter A B, Apan A, Dunn P, Hammer G. 2007. Estimating crop area using seasonal time series of Enhanced Vegetation Index from MODIS satellite imagery. Crop and Pasture Science, 58, 316–325. Potgieter A B, Apan A, Hammer G, Dunn P. 2011. Estimating winter crop area across seasons and regions using time-sequential MODIS imagery. International Journal of Remote Sensing, 32, 4281–4310. Ramankutty N, Foley J A. 1998. Characterizing patterns of global land use: An analysis of global croplands data. Global Biogeochemical Cycles, 12, 667–685. Reed B C, Brown J F, VanderZee D, Loveland T R, Merchant J W, Ohlen D O. 1994. Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 5, 703–714. Ross K W, Gasser G, Spiering B. 2008. Feasibility of estimating relative nutrient contributions of agriculture using MODIS time series, poster. In: Gulf of Mexico Alliance Monitoring Forum. Saint Petersburg, FL, United States. Sakamoto T, Yokozawa M, Toritani H, Shibayama M, Ishitsuka N, Ohno H. 2005. A crop phenology detection method using time-series MODIS data. Remote Sensing of Environment, 96, 366–374.Savitzky A, Golay M J. 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627–1639. Soudani K, le Maire G, Dufrêne E, François C, Delpierre N, Ulrich E, Cecchini S. 2008. Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Remote Sensing of Environment, 112, 2643–2655. Tottman D R, Makepeace R J, Broad H. 1979. An explanation of the decimal code for the growth stages of cereals, with illustrations. Annals of Applied Biology, 93, 221–234.Townshend J, Justice C, Li W, Gurney C, McManus J. 1991. Global land cover classification by remote sensing: Present capabilities and future possibilities. Remote Sensing of Environment, 35, 243–255. Townshend J R, Justice C O, Kalb V. 1987. Characterization and classification of South American land cover types using satellite data. International Journal of Remote Sensing, 8, 1189–1207.Tucker C J, Townshend J R, Goff T E. 1985. African land-cover classification using satellite data. Science, 227, 369–375. Turker M, Arikan M. 2005. Sequential masking classification of multi-temporal Landsat7 ETM+ images for field-based crop mapping in Karacabey, Turkey. International Journal of Remote Sensing, 26, 3813–3830. Wardlow B D, Egbert S L. 2008. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the US Central Great Plains. Remote Sensing of Environment, 112, 1096–1116. Wardlow B D, Egbert S L, Kastens J H. 2007. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sensing of Environment, 108, 290–310. Wardlow B D, Kastens J H, Egbert S L. 2006. Using USDA crop progress data for the evaluation of greenup onset date calculated from MODIS 250-meter data. Photogrammetric Engineering & Remote Sensing, 72, 1225–1234. Wessels K J, De Fries R S, Dempewolf J, Anderson L O, Hansen A J, Powell S L, Moran E F. 2004. Mapping regional land cover with MODIS data for biological conservation: Examples from the Greater Yellowstone Ecosystem, USA and Pará State, Brazil. Remote Sensing of Environment, 92, 67–83. White M A, Thornton P E, Running S W. 1997. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 11, 217–234. Wielgolaski F E. 1974. Phenology in agriculture. In: Phenology and Seasonality Modeling. Springer, Berlin Heidelberg, Germany. pp. 369–381.Wu B, Li Q. 2012. Crop planting and type proportion method for crop acreage estimation of complex agricultural landscapes. International Journal of Applied Earth Observation and Geoinformation, 16, 101–112.Zhang X, Friedl M A, Schaaf C B, Strahler A H, Hodges J C, Gao F, Reedb B C, Huete A. 2003. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84, 471–475. Zhang X, Friedl M A, Schaaf C B. 2006. Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. Journal of Geophysical Research (Biogeosciences (2005–2012)), 111, 1–14.Zhong L, Hawkins T, Biging G, Gong P. 2011. A phenology-based approach to map crop types in the San Joaquin Valley, California. International Journal of Remote Sensing, 32, 7777–7804. |