Alizadeh F, Goldfarb D. 2003. Second-order cone programming.Mathematical Programming, 95, 3-51
Beard R E, Pentikainen T, Pesonen E. 1977. Risk Theory. 2nded. Chapman and Hall, London.
Ben-Tal A, Nemirovski? A S. 2001. Lectures on modern convexoptimization. In: Analysis, Algorithms, and EngineeringApplications. Siam, Philadelphia.
Borch K. 1960. The safety loading of reinsurance premiums.Scandinavian Actuarial Journal, 43, 163-184
Borch K. 1969. The optimal reinsurance treaty. ASTIN Bulletin,5, 293-297
Bu Y. 2005. On optimal reinsurance arrangement. CasualtyActuarial Society Forum, 2005, 1-20
Cai J, Tan K S. 2007. Optimal retention for a stop-lossreinsurance under the VaR and CTE risk measures. ASTINBulletin, 37, 93.Cai J, Tan K S, Weng C, Zhang Y. 2008. Optimal reinsuranceunder VaR and CTE risk measures. Insurance: Mathematicsand Economics, 43, 185-196
Froot K A. 2001. The market for catastrophe risk: A clinicalexamination. Journal of Financial Economics, 60, 529-571
Froot K, Posner S. 2000. Issues in the Pricing of CatastropheRisk. Trade Notes, Marsh & Mclennan Securities.
Fu L, Khury C K. 2010. Optimal layers for catastrophereinsurance. Variance, 4, 191-208
Gajek L, Zagrodny D. 2000. Insurer’s optimal reinsurancestrategies. Insurance: Mathematics and Economics, 27,105-112
Gajek L, Zagrodny D. 2004. Optimal reinsurance under thegeneral risk measures. Insurance: Mathematics andEconomics, 34, 227-240
Gerber H U. 1979. An Introduction to Mathematical Risk Theory.SS Huebner Foundation for Insurance Education, WhartonSchool, University of Pennsylvania, Philadelphia.
Grant M, Boyd S, Ye Y. 2013. CVX: Matlab software fordisciplined convex programming. (Web page and software),version 2.0 beta. [2013-12-30]. http://cvxr.com/cvx/download/
Guerra M, Centeno M L. 2008. Optimal reinsurance policy:The adjustment coefficient and the expected utility criteria.Insurance: Mathematics and Economics, 42, 529-539
Kahn P M. 1961. Some remarks on a recent paper by Borch.ASTIN Bulletin, 1, 265-272
Kaluszka M. 2004. Mean-variance optimal reinsurancearrangements. Scandinavian Actuarial Journal, 2004,28-41
Lobo M S, Vandenberghe L, Boyd S, Lebret H. 1998.Applications of second-order cone programming. LinearAlgebra and Its Applications, 284, 193-228
Ohlin J. 1969. On a class of measures of dispersion withapplication to optimal reinsurance. ASTIN Bulletin, 5,249-266
Porth L, Tan K S, Weng C. 2013. Optimal reinsurance analysisfrom a crop insurer’s perspective. Agricultural FinanceReview, 73, 310-328
Tan K S, Weng C. 2014. Empirical Approach for optimalreinsurance design. North American Actuarial Journal, 18,315-342
Tan K S, Weng C G, Zhang Y. 2009. VaR and CTE criteriafor optimal quota-share and stop-loss reinsurance. NorthAmerican Actuarial Journal, 13, 459-482
Venter G G, Gluck S M, Brehm P J. 2001. Measuring value inreinsurance. CAS Forum, 2001,179-199
Weng C. 2009. Optimal Reinsurance Designs: From an Insurer’sPerspective. University of Waterloo, Canada.
Zhou X H, Fan Q Q, Zhou M, Li Z G. 2012. A comparativestudy of Chinese and american crop insurance products.Insurance Studies, (7), 52-60 (in Chinese) |