Bechar I, Moisan S. 2010. On-line counting of pests in a greenhouse using computer vision. In: VAIB 2010- Visual Observation and Analysis of Animal and Insect Behavior. Istanbul, Turkey. pp. 1-4 Boissard P, Martin V, Moisan S. 2008. A cognitive vision approach to early pest detection in greenhouse crops. Computer and Electronics in Agriculture, 13, 81-93 GB/T 15794-2009 2009. The standard on the forecast and survey of rice planthoppers. China National Standardization Management Committee. (in Chinese) Cho J, Choi J, Qiao M, Ji C W, Kin H Y, Uhm K B, Chon T S. 2007. Automatic identification of whiteflies, aphids and thrips in greenhouse based on image analysis. International Journal of Mathematics and Computers in Simulation, 1, 46-53 Cortes C, Vapnik V. 1995. Support-vector networks. Machine Learning, 3, 273-297 Dalal N, Triggs B. 2005. Histograms of oriented gradients for human detection. Computer Vision and Pattern Recognition, 1, 886-893 Freund Y, Schapire R E. 1997. A Decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 1, 119-139 Huddar S, Gowri S, Keerthana K, Vasanthi S, Rupanagudi S. 2012. Novel algorithm for segmentation and automatic identification of pests on plants using image processing. In: ICCCNT 2012-Proceedings of the Third International Conference on Computing Communication and Networking Technologies. Coimbatore, India. Kumar R, Martin V, Moisan S. 2010. Robust insect classification applied to real time greenhouse infestation monitoring. In: ICPR 2010 - Proceedings of the 20th International Conference on Pattern Recognition on Visual Observation and Analysis of Animal and Insect Behavior Workshop. IEEE, Istanbul, Turkey. pp. 1-4 Liao P S, Chen T S, Chung P C. 2001. A fast algorithm for multilevel thresholding. Journal of Information Science and Engineering, 5, 713-727 MacLeod N, Benfield M, Culverhouse P. 2010. Time to automate identification. Nature, 9, 154-155 Martin V, Moisan S, Paris B, Nicolas O. 2008. Towards a video camera network for early pest detection in greenhouses. In: Proceedings of International Conference on Endure Diversifying Crop Protection. La Grande Motte, France. pp. 12-15 Mundada1R G, Gohokar D V V. 2013. Detection and classification of pests in greenhouse using image processing. IOSR Journal of Electronics and Communication Engineering, 6, 57-63 Park Y S, Han M W, Kim H Y, Uhm K B, Park C G, Lee J M, Chon T S. 2003. Density estimation of rice planthoppers using digital image processing algorithm. Korean Journal of Applied Entomology, 1, 57-63 Pathak M D, Zeyaur R K. 1994. Insect Pests of Rice. International Rice Research Institute, Manila, Philippines. Qiao M, Lim J, Ji C W, Chung B K, Kim H Y, Uhm K B, Myung C S, Cho J, Chon T S. 2008. Density estimation of Bemisia tabaci (Hemiptera: Aleyrodidae) in a greenhouse using sticky traps in conjunction with an image processing system. Journal of Asia-Pacific Entomology, 11, 25-29 Shariff A R M, Aik Y Y, Hong W T, Mansor S, Mispan R. 2006. Automated identification and counting of pests in the paddy field using image analysis. In: Computer in Agriculture and Natural Resource. The 4th Word Congress Conference. Orlando, USA. pp. 759-764 Viola P, Jones M J. 2004. Robust real-time face detection. International Journal of Computer Vision, 2, 137-154 Zhang J W, Wang Y M, Shen Z R. 2006. Novel method for estimating cereal aphid population based on computer vision technology. Transactions of the CSAE, 9, 159-162 (in Chinese) Zhao J, Cheng X P. 2007. Field pest identification by improved texture segmentation scheme. New Zealand Journal of Agricultural Research, 5, 719-723 Zou X G, Ding W M. 2012. Design of processing system for agricultural pests with digital signal processor. Journal of Information & Computational Science, 15, 4575-4582. |