Bach H, Mauser W. 2003. Methods and examples for remotesensing data assimilation in land surface process modeling.IEEE Transaction on Geoscience and Remote Sensing,41, 1629-1637Baggio A, Langendoen K. 2008. Monte Carlo localizationfor mobile wireless sensor networks. Ad Hoc Networks,6, 718-733Bastiaanssen W G M, Noordman E J M, Pelgrum H, DavidsG, Thoreson B P, Allen R G. 2005. SEBAL modelwith remotely sensed data to improve water-resourcesmanagement under actual field conditions. Journal ofIrrigation and Drainage Engineering, 131, 85-93Berni J, Zarco-Tejada P J, Suárez L, Fereres E. 2009.Thermal and narrowband multispectral remote sensing forvegetation monitoring from an unmanned aerial vehicle.IEEE Transaction on Geoscience and Remote Sensing,47, 722-738Brink A B, Eva H D. 2009. Monitoring 25 years of land coverchange dynamics in Africa: A sample based remote sensingapproach. Applied Geography, 29, 501-512Carfagna E, Gallego F J. 2005. Using remote sensing foragricultural statistics. International Statistical Review,73, 389-404Dixon B, Candade N. 2008. Multispectral landuse classificationusing neural networks and support vector machines: Oneor the other, or both? International Journal of RemoteSensing, 29, 1185-1206Dorigo W, Zurita-Milla R, Wit A D. 2007. A review onreflective remote sensing and data assimilation techniquesfor enhanced agroecosystem modeling. InternationalJournal of Applied Earth Observation and Geoinformation,9, 165-193Haboudane D, Miller J R, Tremblay N, Zarco-Tejada P J,Dextraze L. 2002. Integrated narrow-band vegetationindices for prediction of crop chlorophyll content forapplication to precision agriculture. Remote Sensing ofEnvironment, 81, 416-426Haboudane D. 2004. Hyperspectral vegetation indices andnovel algorithms for predicting green LAI of crop canopies:Modeling and validation in the context of precisionagriculture. Remote Sensing of Environment, 90, 337-352Hobi M L, Ginzler C. 2012. Accuracy assessment of digitalsurface models based on WorldView-2 and ADS80 stereoremote sensing data Sensors, 12, 6347-6368Liang S. 2005. Quantitative Remote Sensing of Land Surfaces.John Wiley & Sons, United States. pp. 356-379Morais R, Fernandes M A, Matos S G, Serôdio C, FerreiraP, Reis M. 2008. A ZigBee multi-powered wirelessacquisition device for remote sensing applications inprecision viticulture. Computers and Electronics inAgriculture, 62, 94-106Olioso A, Inoue Y, Ortega-Farias S. 2005. Future directionsfor advanced evapotranspiration modeling: Assimilation ofremote sensing data into crop simulation models and SVATmodels. Irrigation and Drainage Systems, 19, 377-412Remondino F, Barazzetti L, Nex F, Scaioni M, Sarazzi D. 2011.UAV photogrammetry for mapping and 3-D modeling1450SHI Yun et al.© 2014, CAAS. All rights reserved. Published by Elsevier Ltd.current status and future perspectives. InternationalArchives of the Photogrammetry, Remote Sensing andSpatial Information Sciences, 38, 1-7Rozenstein O, Karnieli A. 2011. Comparison of methods forland-use classification incorporating remote sensing andGIS inputs. Applied Geography, 31, 533-544Shalaby A, Tateishi R. 2007. Remote sensing and GIS formapping and monitoring land cover and land-use changesin the Northwestern coastal zone of Egypt. AppliedGeography, 27, 28-41Thrun S, Fox D, Burgard W, Dellaert F. 2001. Robust MonteCarlo localization for mobile robots. Artificial Intelligence,128, 99-141Wang N, Zhang N, Wang M. 2006. Wireless sensors inagriculture and food industry - recent developmentand future perspective. Computers and Electronics inAgriculture, 50, 1-14Yang Y, Newsam S. 2010. Bag-of-visual-words and spatialextensions for land-use classification. In: Proceedingsof the 18th SIGSPATIAL International Conference onAdvances in Geographic Information Systems. ACM.270-279Yuan F, Sawaya K E, Loeffelholz B C, Bauer M E. 2005.Land cover classification and change analysis of the TwinCities (Minnesota) Metropolitan Area by multitemporalLandsat remote sensing. Remote Sensing of Environment,98, 317-328 |