Aworn A, Thiravetyan P, Nakbanpote W. 2008. Preparation and characteristics of agricultural waste activated carbon by physical activation having micro-and mesopores. Journal of Analytical and Applied Pyrolysis, 82, 279- 285. Barlindhaug J, Ødegaard H. 1996. Thermal hydrolysis for the production of carbon source for denitrification. Water Science and Technology, 34, 371-378 Berge N D, Ro K S, Mao J, Flora J R V, Chappell M A, Bae S. 2011. Hydrothermal carbonization of municipal waste streams. Environmental Science & Technology, 45, 5696-5703 Cao X, Ro K S, Chappell M, Li Y, Mao J. 2011. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Energy and Fuels, 25, 388-397 Channiwala S A, Parikh P P. 2002. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel, 81, 1051-1063 Chen M, Li X M, Yang Q, Zeng G M, Zhang Y, Liao D X, Liu J J, Hu J M, Guo L. 2008. Total concentrations and speciation of heavy metals in municipal sludge from Changsha, Zhuzhou and Xiangtan in middle-south region of China. Journal of Hazardous Materials, 160, 324-329 Cheng C H, Lehmann J, Engelhard M H. 2008. Natural oxidation of black carbon in soils: Changes in molecular form and surface charge along a climosequence. Geochimica et Cosmochimica Acta, 72, 1598-1610 Chorover J, Amistadi M K, Chadwick O A. 2006. Surface charge evolution of mineral-organic complexes during pedogenesis in Hawaiian basalt. Geochimica et Cosmochimica Acta, 68, 4859-4876 Cui X, Antonietti M, Yu S H. 2006. Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small, 2, 756-759 Demir-Caken, R, Baccile N, Antonietti M, Titirici M. 2009. Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid. Chemistry of Materials, 21, 484-490 Downie A, Crosky A, Munroe P. 2009. Physical properties of biochar. In: Lehmann J, Joseph S, eds., Biochar for Environmental Management-Science and Technology. Earthscan, London, UK. pp. 13-32 Funke A, Ziegler F. 2010. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioproducts & Biorefining-Biofpr, 4, 160-177 GB/T 212-2008 2008. Proximate analysis of coal. Standardization administration of the People’s Republic of China. State Environmental Protection Administration. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. pp. 3-5 GB 18918-2002 2002. Discharge standard of pollutants for municipal wastewater treatment plant. State Environmental Protection Administration. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. p. 8. Heilmann S M, Davis H T, Jader L R, Lefebvre P A, Sadowsky M J, Schendel F J, Keitz M G, Valentas K J. 2010. Hydrothermal carbonization of microalgae. Biomass and Bioenergy, 34, 875-882 Hnatukova P, Kopecka I, Pivokonsky M. 2011. Adsorption of cellular peptides of Microcystis aeruginosa and two herbicides onto activated carbon: Effect of surface charge and interactions. Water Research, 45, 3359-3368 Hong J L, Li X Z. 2011. Environmental assessment of sewage sludge as secondary raw material in cement production - A case study in China. Waste Management, 31, 1364-1371 Hossain M K, Strezov V, Chan K Y, Ziolkowski A, Nelson P F. 2011. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92, 223-228 Hu B, Yu S H, Wang K, Liu L, Xu X W. 2008. Functional carbonaceous materials from hydrothermal carbonization of biomass: An effective chemical process. Dalton Transactions, 40, 5414-5423 Hwang I H, Aoyama H, Matsuto T, Nakagishi T, Matsuo T. 2012. Recovery of solid fuel from municipal solid waste by hydrothermal treatment. Waste Management, 32, 410- 416. Ibarra V, Munoz E, Moliner R. 1996. FTIR study of the evolution of coal structure during the coalification process. Organic Geochemistry, 24, 725-735 Jorand F, Bouge-Bigne F, Block J C, Urbain V. 1998. Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances. Water Science and Technology, 37, 307-316 Kaal J, Cortizas A M, Nierop K G J. 2009. Characterisation of aged charcoal using a coil probe pyrolysis-GC/MS method optimised for black carbon. Journal of Analytical and Applied Pyrolysis, 85, 408-416 Kim K, Fujie K, Fujisawa T. 2008. Feasibility of recycling residual solid from hydrothermal treatment of excess sludge. Environmental Engineering and Management, 13, 112-118 Li X, Ke Z, Dong J. 2011. PCDDs and PCDFs in sewage sludges from two wastewater treatment plants in Beijing, China. Chemosphere, 82, 635-638 Liao B Q, Allen D G, Droppo I G, Leppard G G, Liss S N. 2001. Surface properties of sludge and their role in bioflocclusion and settleability. Water Research, 35,339-350Libra J A, Ro K S, Kammann C, Funke A, Berge N D,Neubauer Y, Titirici M M, Fühner C, Bens O, Kern J,et al. 2011. Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry,processes and applications of wet and dry pyrolysis.Biofuels, 2, 89-124Liu Z, Zhang F S. 2009. Removal of lead from water usingbiochars prepared from hydrothermal liquefaction of biomass. Journal of Hazardous Materials, 167, 933-939Liu Z, Zhang F S. 2011. Removal of copper (II) and phenolfrom aqueous solution using porous carbons derivedfrom hydrothermal chars. Desalination, 267, 101-106Liu Z, Zhang F S, Wu J Z. 2010. Characterization andapplication of chars produced from pinewood pyrolysisand hydrothermal treatment. Fuel, 89, 510-514Lu L, Namioka T, Yoshikawa K. 2011. Effects of hydrothermal treatment on characteristics andcombustion behaviors of municipal solid wastes. AppliedEnergy, 88, 3659-3664Mumme J, Eckervogt L, Pielert J, Diakité M, Rupp F, KernJ. 2011. Hydrothermal carbonization of anaerobicallydigested maize silage. Bioresource Technology, 102,9255-9260Rillig M C, Wagner M, Salem M, Antunes P M, George C,Ramke H G, Titirici M M, Antonietti M. 2010. Materialderived from hydrothermal carbonization: Effects onplant growth and arbuscular mycorrhiza. Applied Soil Ecology, 45, 238-242Š?an?ar J, Mila?i?Scancar J, Milacic R, Strazar M, Burica O.2000. Total metal concentrations and partitioning of Cd,Cr, Cu, Fe, Ni and Zn in sewage sludge. The Science ofthe Total Environment, 250, 9-19Sevilla M, Fuertes A B. 2009a. Chemical and structural properties of carbonaceous products obtained byhydrothermal carbonization of saccharides. Chemistry-AEuropean Journal, 15, 4195-4203Sevilla M, Fuertes A B. 2009b. The production of carbonmaterials by hydrothermal carbonization of cellulose.Carbon, 47, 2281-2289Song J, Peng P. 2010. Characterisation of black carbonmaterials by pyrolysis-gas chromatography-mass spectrometry. Journal of Analytical and AppliedPyrolysis, 87, 129-137Titirici M M, Thomas A, Antonietti M. 2007a. Back in theblack: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem?New Journal of Chemistry, 31, 787-789Titirici M M, Thomas A, Yu S H, Muller J O, Antonietti M.2007b. A direct synthesis of mesoporous carbons withbicontinuous pore morphology from crude plant materialby hydrothermal carbonization. Chemistry of Materials,19, 4205-4212Wang X, Si J, Tan H, Zhao Q, Xu T. 2011. Kinetics investigation on the reduction of NO using straw char based on physicochemical characterization. BioresourceTechnology, 102, 7401-7406Xue T, Huang X. 2007. Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge. Journal of Environmental Sciences, 19, 1153-1158Yao C, Shin Y, Wang L Q, Windisch C F, Samuels W D,Arey B W, Wang C, Risen W M, Exarhos G J. 2007.Hydrothermal dehydration of aqueous fructose solutionsin a closed system. Journal of Physical Chemistry (C),111, 15141-15145Yu J, Tian N N, Wang K J, Ren Y. 2007. Analysis and discussion of sludge disposal and treatment of sewage treatment plants in China. Chinese Journal of Environmental Engineering, 1, 82-86 (in Chinese)Yu S, Cui X, Li L, Li K, Yu B, Antonietti M, Colfen H.2004. From starch to metal/carbon hybrid nanostructures: hydrothermal metal-catalyzed carbonization. AdvancedMaterials, 18, 1636-1640Zhang J H, Luo Q, Lin Q M, Zhao X X, Li G T, Wu G F.2013. Characteristics of wastewater from municipal sludge after hydrothermal carbonization treatment.Chinese Journal of Environmental Engineering, 7, 3363-3368 (in Chinese)Zhang Y A, Gao D, Chen T B, Zheng G D, Li Y X. 2006.Economical evaluation of different techniques totreatment and dispose sewage sludge in Beijing. Ecologyand Environment, 15, 234-238. (in Chinese) |