[1]Aitchison J. 1986. The Statistical Analysis ofCompositional Data. Chapman and Hall, London.Bishop T F A, McBratney A B. 2001. A comparison ofprediction methods for the creation of field-extent soilproperty maps. Geoderma, 103, 149-160[2]Bishop T F A, Lark R M. 2008. Reply to “Standardized vs.customary ordinary cokriging…” by A. Papritz.Geoderma, 146, 397-399[3]Cambardella C A, Moorman T B, Novak J M, Parkin T B,Karlen D L, Turco R F, Konopka A E. 1994. Field-scalevariability of soil properties in central low a soils. SoilScience Society of America Journal, 58, 1501-1511[4]Chai X R, Shen C Y, Yuan X Y, Huang Y F. 2008. Spatialprediction of soil organic matter in the presence ofdifferent external trends with REML-EBLUP. Geoderma,148, 159-166[5]Chaplot V. 2005. Impact of DEM mesh size and soil mapscale on SWAT runoff, sediment and NO3-N loadspredictions. Journal of Hydrology, 312, 207-222[6]Egozcue J J, Pawlowsky-Glahn V, Mateu-Figueras G,Barceló-Vidal C. 2003. Isometric logratio transformationsfor compositional data analysis. MathematicalGeology, 35, 279-300[7]de Gruijter J J, Walvoort D J J, van Gaans P F M. 1997.Continuous soil maps - a fuzzy set approach to bridgethe gap between aggregation levels of process anddistribution models. Geoderma, 77, 169-195[8]Gobin A, Campling P, Feyen J. 2001. Soil-landscapemodeling to quantify spatial variability of soil texture.Physics and Chemistry of the Earth (Part B, Hydrology,Oceans and Atmosphere), 26, 41-45[9]Goovaerts P. 1999. Geostatistics in soil science: state-ofthe-art and perspectives. Geoderma, 89, 1-45[10]Hengl T, Heuvelink G B M, Alfred Stein A. 2004. A genericframework for spatial prediction of soil variables basedon regression-kriging. Geoderma, 120, 75-93[11]Isaaks E H, Srivastava R M. 1989. An Introduction toApplied Geostatistics. Oxford University Press, NewYork. p. 561.Journel A G, Huijbregts C J. 1978. Mining Geostatistics.Academic Press, London. p. 600.Kerry R, Oliver M A. 2007. Comparing sampling needs forvariograms of soil properties computed by the methodof moments and residual maximum likelihood.Geoderma, 140, 383-396[12]Lark R M. 2000. A comparison of some robust estimators ofthe variogram for use in soil survey. European Journalof Soil Science, 51, 137-157[13]Lathrop Jr R G, Aber J D, Bognar J A. 1995. Spatial variabilityof digital soil maps and its impact on regional ecosystemmodeling. Ecological Modelling, 82, 1-10[14]Ließ M, Glaser B, Huwe B. 2012. Uncertainty in the spatialprediction of soil texture comparison of regression treeand Random Forest models. Geoderma, 170, 70-79[15]Lilburne L R, Webb T H. 2002. Effect of soil variability,within and between soil taxonomic units, on simulatednitrate leaching under arable farming, New Zealand.Australian Journal of Soil Research, 40, 1187-1199[16]Martin-Fernandez J A, Barcelo-Vidal C, Pawlowsky-GlahnV. 1998. Measures of difference for compositional dataand hierarchical clustering methods. In: Buccianti A,Nardi G, Potenza R, eds., Proceedings of IAMG’98.Italy. pp. 526-539[17]McBratney A B, de Gruijter J J, Brus D J. 1992. Spatialprediction and mapping of continuous soil classes.Geoderma, 54, 39-64[18]McBratney A B, Mendonca Santos M L, Minasny B. 2003.On digital soil mapping. Geoderma, 117, 3-52[19]McBratney A B, Odeh I O A, Bishop T F A, Dunbar M S,Shatar T M. 2000. An overview of pedometrictechniques for use in soil survey. Geoderma, 97, 293-327[20]Meul M, Meirvenne M V. 2003. Kriging soil texture underdifferent types of nonstationarity. Geoderma, 112, 217-233[21]NSS (National Soil Survey Office). 1995. Chinese Soil GenusRecords. vol. 1-6[22]China Agriculture Press, Beijing. (inChinese).Odeh I O A, McBratney A B, Chittleborough D J, 1995.Further results on prediction of soil properties fromterrain attributes: heterotopic cokriging and regressionkriging.Geoderma, 67, 215.Pang S, Li T X, Wang Y D, Yu H Y, Li X. 2009. Spatialinterpolation and sample size optimization for soil copper(Cu) investigation in cropland soil at county scale usingcokriging. Agricultural Sciences in China, 8, 1369-1377[23](in Chinese)Simbahan G C, Dobermann A, Goovaerts P, Ping J, HaddixM L. 2006. Fine-resolution mapping of soil organiccarbon based on multivariate secondary data.Geoderma, 132, 471-489[24]SPSS Institute. 2012. SPSS Software. ver. 20. SPSS, NewYork, Armonk.Sumfleth K, Duttmann D. 2008. Prediction of soil propertydistribution in paddy soil landscapes using terrain dataand satellite information as indicators. EcologicalIndicators, 8, 485-501[25]Tan M Z, Mi S X, Li K L, Chen J. 2009. Influences of differentinterpolation methods on spatial prediction ofcompositional data -A case of fuzzy membership valuesof soil continuous classification. Soils, 41, 998-1003[26](in Chinese)Theil H, van De Panne C. 1960. Quadratic programming asan extension of classical quadratic maximization.Management Science, 7, 1-20[27]Walvoort D J J, de Gruijter J J. 2001. Compositional kriging:A spatial interpolation method for compositional data.Mathematical Geology, 33, 951-966[28]Wismer D A, Chattergy R. 1978. Introduction to NonlinearOptimization: A Problem Solving Approach. ElsevierNorth-Holland, Amsterdam, The Netherlands. p. 395.Zhang S W, Huang Y F, Shen C Y, Ye H C, Du Y C. 2012.Spatial prediction of soil organic matter using terrainindices and categorical variables as auxiliaryinformation. Geoderma, 171-172, 35-43[29]Zhang S W, Wang S T, Liu N, Ye H C, Huang Y F. 2011.Comparison of spatial prediction method for soil texture.Transactions of the Chinese Society of AgriculturalEngineering, 27, 333-339 (in Chinese)[30]Zhao Z, Chow T L, Rees H W, Yang Q, Xing Z, Meng F R.2009. Predict soil texture distributions using an artificialneural network model. Computers and Electronics inAgriculture, 65, 36-48. |