[1]Abdi H, Williams L J. 2010. Principal component analysis. Wiley Interdisciplinary reviews: Computational Statistics, 2, 433-459. [2]Batet M, Sanchez D, Valls A. 2010. An ontology-based measure to compute semantic similarity in biomedicine. Journal of Biomedical Informatics, 44, 118-125. [3]Berry M W. 2003. Survey of Text Mining: Clustering, Classification, and Retrieval (Hardcover). Springer-Verlag Berlin, Heidelberg. Bloehdorn S, Cimiano P, Hotho A, Staab S. 2005. An ontology-based framework for text mining. GLDVJournal for Computational Linguistics and Language Technology, 20, 87-112. [4]Chen R C, Chuang C H. 2008. Automating construction of a domain ontology using a projective adaptive resonance theory neural network and Bayesian network. Expert Systems, 25, 414-430. [5]Chua S, Kulathuramaiyer N. 2004. Semantic feature selection using wordNet. In: Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence. Beijing, China. pp. 166-172. [6]Dollah R B, Aono M. 2011. Ontology based approach for classifying biomedical text abstracts. International Journal of Data Engineering (IJDE), 2, 84. Gruber T R. 1993. A translation approach to portable ontology specifications. Knowledge Acquisition, 5, 199-220. [7]He D, Wu X D. 2006. Ontology-based feature weighting for biomedical literature classification. In: Proceedings of the 2006 IEEE International Conference on Information Reuse and Integration. Hawaii, USA. pp. 280-285. [8]He X, Niyogi P. 2004. Locality preserving projections. In: Proceedings of the NIPS, Advances in Neural Information Processing Systems. MIT Press, Vancouver. p. 103. Hotho A, Maedche A, Staab S. 2002. Ontology-based text document clustering. In: Proceedings of the IJCAI-2001 Workshop “Text Learning: Beyond Supervision”. Seattle, USA. pp. 48-54. [9]Hu F, Zhang Y. 2010. Text mining based on domain ontology. In: Proceedings of the International Conference on E-Business and E-Government. Guangzhou, China. pp. 1456-1459. [10]Jing L, Zhou L, Ng M K, Huang J Z. 2006. Ontology-based distance measure for text clustering. In: Workshop on Text Mining, SIAM International Conference on Data Mining. Bethesda, Maryland, USA. Kawtrakul A. 2012. Ontology engineering and knowledge services for agriculture domain. Journal of Integrative Agriculture, 11, 741-751. [11]Khan L, Luo F. 2002. Ontology construction for information selection. In: Proceedings of 14th IEEE International Conference on Tools with Artificial Intelligence. Washington, D.C., USA. pp. 122-127. [12]Kuo C C, Ma K Y. 1998. Error analysis and confidence measure of Chinese word segmentation. In: The 5th International Conference on Spoken Language Processing. Sydney, Australia. Liu Y, Wang X, Wu C. 2008. ConSOM: A conceptional self-organizing map model for text clustering. Neurocomputing, 71, 857-862.[13]Moravec P, Kolovrat M, Snasel V. 2004. LSI vs. Wordnet ontology in dimension reduction for information retrieval. DATESO, Cerna Ricka, Czech Republic. pp. 254-259. [14]Nyberg K, Raiko T, Tinanen T, Hyvnen E. 2010. Document classification utilising ontologies and relations between documents. In: Proceedings of the 8th Workshop on Mining and Learning with Graphs. Washington, D.C., USA. pp. 86-93. [15]Solka J L. 2008. Text data mining: theory and methods. Statistics Surveys, 2, 94-112. [16]Wang B B, McKay R I, Abbass H A, Barlow M. 2003. A comparative study for domain ontology guided feature extraction. In: Proceedings of the 26th Australian Computer Science Conference. Australian Computer Society, Adelaide, South Australia. pp. 69-78. [17]Wei Y Y, Wang R J, Hu Y M, Wang X. 2012. From web resources to agricultural ontology: a method for semiautomatic construction. Journal of Integrative Agriculture, 11, 775-783. [18]Weng S S, Tsai H J, Liu S C, Hsu C H. 2006. Ontology construction for information classification. Expert Systems with Applications, 31, 1-12. [19]Wu S H, Hsu W L. 2002. SOAT: a semi-automatic domain ontology acquisition tool from Chinese corpus. In: Proceedings of the 19th International Conference on Computational Linguistics. Howrd International House and Academia Sinica, Taipei, Taiwan, China. pp. 1-5. [20]Wu S H, Tsai T H, Hsu W L. 2003. Text categorization using automatically acquired domain ontology. In: The 6th International Workshop on Information Retrieval with Asian Languages. Sappora, Japan. pp. 138-145. [21]Zhang D, Jing X Y, Yang J. 2006. Linear discriminant analysis. Biometric Image Discrimination Technologies: Compututional Intelligence and Its Applications Series. IgI Global, Hershey, Pennsylvania, USA. pp. 41-64. [22]Zhang X D, Jing L P, Hu X H, Ng M, Xia J L, Zhou X H. 2008. Medical document clustering using ontologybased term similarity measures. International Journal of Data Warehousing and Mining, 4, 62-73. [23]Zhang X D, Jing L P, Hu X H, Ng M, Xia J L, Zhou X H. 2007. A comparative study of ontology based term similarity measures on PubMed document clustering. In: Advances in Databases: Concepts, Systems and Applications. Springer-Verlag Berlin, Heidelberg. pp. 115-126. |