Journal of Integrative Agriculture

• •    下一篇

基于安卓智能设备的流域氮磷农业面源污染防控决策支持系统开发

  

  • 修回日期:2025-03-27

Development of a smart device android-based decision support system for controlling non-point source nitrogen and phosphorus pollution in an agricultural catchment

Meihui Wang1, 3*, Wenqian Jiang2*, Yuxi Fu2*, Yi Wang4, Xinliang Liu2, Jianlin Shen2, Feng Liu2, Yong Li1#   

  1. 1 State Key Laboratory of Earth System Numerical Modeling and Application, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2 Key Laboratory of Agro-ecological Processes in Subtropical Regions/Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China

    3 Key Laboratory of Environment Change and Resources Use in Beibu Gulf of Ministry of Education, Nanning Normal University, Nanning 530001, China

    4 College of Hydraulic and Civil Engineering, Ludong University, Yantai 264025, China

  • Revised:2025-03-27
  • About author:Meihui Wang, Mobile: +86-18076550069, E-mail: mhwang@nnnu.edu.cn; #Correspondence Yong Li, Mobile: +86-13107488562, E-mail: yli@mail.iap.ac.cn
  • Supported by:

    This study was financially supported by the National Key Research and Development Program of China (2024YFD1700104), the National Natural Science Foundation of China (42161144002, 41977156), the Guangxi Natural Science Foundation, China (2022GXNSFBA035625), the Guangxi Technology Base and Talent Subject, China (Guike AD22035927), the National Key Research and Development Programs of China (2022YFE0209200-03), the Shandong Key Research and Development Project (2022TZXD0045), and the State Key Laboratory of Earth System Numerical Modeling and Application, Institute of Atmospheric Physics, Chinese Academy of Sciences. 

摘要:

制定农业面源氮(N)磷(P)污染的防控策略常常具有挑战性,需要在工程成本与处理效果之间寻找平衡,一旦防控策略失衡往往会导致治理农业流域面源污染时出现不理想的治理后果或高昂的技术成本。针对这一问题,本文开发了一种可行的便携式流域N&P决策支持系统(CNPDSS),该系统基于安卓智能手机平台,并集成了Web地理信息系统(GIS)和流域氮磷污染防控评估系统。CNPDSS旨在通过人工智能驱动的优化算法来制定氮磷流失负荷控制目标,并控制防控工程成本。该系统由四个主要组件构成:用户界面(GUI)、GIS模块N&P污染模型(NPPM)和决策支持系统(DSS)。该系统的用户界面简洁,并集成了GIS模块,提供了直观的交互体验,适合非专业人员使用。CNPDSS采用简洁的经验模型来预测氮磷负荷,提高了预测效率并减少了参数复杂度;同时综合考虑了流域内氮、磷迁移路径和三种控制措施(农田源头减量、生态沟渠过程截留及末端湿地净化处理),形成了全面的“三元”面源氮磷防控体系。为了优化子流域中的任一N&P污染防控方案,提高其成本效益比,CNPDSS采用差分进化算法(DEA)执行双目标决策优化计算。本研究应用CNPDSS在我国中部某一典型农业小流域进行了案例开发应用,证实了CNPDSS可以通过制定了一套优化且高效的氮磷污染控制策略,确保该流域水质达到国标III类水的标准(GB3838-2002TN浓度≤ 1.0 mg/L TP≤ 0.2 mg/L)。该案列也表明CNPDSS具备自适应设计和灵活架构,可以支撑其在其它流域中的广泛应用。

Abstract:

Intervention strategies to control non-point source nitrogen (N) and phosphorus (P) pollution in agriculture are expensive and there is a trade-off between engineering cost and treatment effectiveness. Implementing strategies often result in unsatisfactory outcomes and massive engineering costs when managing diffusive pollution in agricultural catchments. To address this issue, this paper proposes a robust, handy, catchment N & P decision support system (CNPDSS), an Android-based smartphone system integrated with a web-based Geographic Information System (GIS). The CNPDSS aims to provide artificial intelligence-driven decisions that minimize N & P loadings and engineering costs for mitigating pollution in agricultural catchments. It consists of four components: a general user interface (GUI), GIS, N & P pollution modeling (NPPM), and a DSS. The CNPDSS simplifies the GUI and integrates GIS modules to create a user-friendly interface, enabling non-professional users to operate the system easily through intuitive actions. The NPPM uses straightforward empirical models to predict N & P loadings, enhancing efficiency by avoiding excessive parameters. Taking into account the N & P movement pathway in the catchment, the DSS incorporates three control measures: source reduction in farmland (before migration stage), process retention by ecological ditch (midway transport stage), and down-end purification by constructed wetland (waterbody discharge stage), to formulate a comprehensive ternary controlling strategy. To optimize the cost-effectiveness of any proposed N & P control strategies for sub-catchments, a differential evolution algorithm (DEA) is employed in CNPDSS to carry out a dual-objective decision-making optimization computation. In this study, the CNPDSS is applied to a case study in an agricultural catchment in central China to develop the most cost-effective ternary N & P control strategies that ensure the catchment water quality within Criterion III of the Chinese Surface Water Quality Standard GB3838-2002 is met (total N concentration≤1.0 mg L−1 and total P concentration≤0.2 mg L−1). Our results demonstrate that the CNPDSS is feasible and also possesses an adaptive design and flexible architecture to enable its generalization and extension to support strong hands-on applications in other catchments.

Key words: decision support system ,  , non-point source N &, P pollution ,  , a ternary controlling strategy ,  , dual-objective optimization ,  , agricultural catchment