Journal of Integrative Agriculture ›› 2025, Vol. 24 ›› Issue (5): 1831-1843.DOI: 10.1016/j.jia.2025.03.003

• • 上一篇    下一篇

猕猴桃RAD23基因家族的全基因组分析和AcRAD23 D1在抗旱中的功能特征

  

  • 收稿日期:2023-12-12 修回日期:2025-03-13 接受日期:2024-10-17 出版日期:2025-05-20 发布日期:2025-04-16

Genome-wide analysis of RAD23 gene family and a functional characterization of AcRAD23D1 in drought resistance in Actinidia

Xiaoli Zhang, Daolin Ye, Xueling Wen, Xinling Liu, Lijin Lin, Xiulan Lü, Jin Wang, Qunxian Deng, Hui Xia, Dong Liang#   

  1. College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China

  • Received:2023-12-12 Revised:2025-03-13 Accepted:2024-10-17 Online:2025-05-20 Published:2025-04-16
  • About author:#Correspondence Dong Liang, Tel: +86-28-86291136, E-mail: liangeast@sicau.edu.cn
  • Supported by:

    This study was financially supported by the National Natural Science Foundation of China (32472679), the Sichuan Science and Technology Department Projects (2023ZHCG0098, 2024JDRC0011), the Chengdu Science and Technology Department Project, China (2024-YF05-00408-SN), the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (GZC20231871) and the Special Project for the Double Support Plan of Discipline Construction at Sichuan Agricultural University, China (2024ZYTS021).

摘要:

UBL-UBA蛋白作为26 S泛素蛋白降解途径中的转运蛋白,在植物生长和发育以及应对各种生物和非生物胁迫中发挥关键作用。尽管RAD23(一种UBL-UBA蛋白)在多种植物中得到了广泛研究,但目前在猕猴桃中还未见报道。本研究中,我们在猕猴桃中鉴定了六个AcRAD23基因,分析了它们的系统发育关系、基因结构、保守基序组成和启动子中的顺式作用元件。亚细胞定位实验表明,所有AcRAD23都定位在细胞核和细胞膜中。实时定量PCR(qRT-PCR)分析证明了AcRAD23基因在不同组织和各种逆境(干旱、涝渍、盐等)下的差异表达模式,AcRAD23D1对非生物胁迫表现出强烈的响应。此外,我们在干旱胁迫条件下使用VIGS介导的基因沉默方法研究了AcRAD23D1的生物学功能。与对照系相比,AcRAD23D1表达的抑制导致D1-VIGS株系的相对含水量(RWC)降低,但导致丙二醛(MDA)含量和相对电解质渗漏(REL)水平增加。此外,D1-VIGS株系表现出更高的活性氧(RoS)积累,同时超氧化物歧化酶(SOD)和酶(POD)活性降低。这些发现表明AcRAD23 D1可能在调节猕猴桃对干旱胁迫的反应方面发挥积极作用。我们的结果为AcRAD23在非生物胁迫条件下的潜在参与提供了新的见解,同时为理解猕猴桃适应胁迫的分子机制提供了理论基础。

Abstract:

UBL-UBA protein functions as a shuttle factor in the 26S ubiquitin degradation pathway, playing a critical role in plant growth and development, and responding to various biotic and abiotic stresses.  Although RAD23, a type of UBL-UBA protein, has been extensively studied in several plants, there is currently no comprehensive analysis available for kiwifruit (Actinidia chinensis).  In this study, we identified six AcRAD23 genes in kiwifruit and further analyzed their phylogenetic relationships, gene structure, conserved motif composition and cis-acting element in the promoter.  Subcellular localization experiments revealed that all AcRAD23 were localized in the nucleus and the cell membranes.  Quantitative real-time PCR (qRT-PCR) analysis demonstrated differential expression patterns of these AcRAD23 genes across different tissues and under various stress conditions (drought, waterlogging, salt stress, etc.), with AcRAD23D1 showing the highest responsiveness to abiotic stress.  Additionally, we investigated the biological function of AcRAD23D1 using VIGS-mediated gene silencing methods under drought stress conditions.  Suppression of AcRAD23D1 expression resulted in reduced relative water content (RWC) but increased malondialdehyde (MDA) content and relative electrolyte leakage (REL) levels in D1-VIGS lines compared to control lines.  Furthermore, D1-VIGS lines exhibited a higher accumulation of reactive oxygen species (ROS) along with decreased superoxide dismutase (SOD) and peroxidase (POD) enzyme activities.  These findings suggest that AcRAD23D1 may play a positive role in regulating kiwifruit’s response to drought stress.  Our results provide new insights into the potential involvement of AcRAD23 under abiotic stress conditions while offering a theoretical foundation for understanding the molecular mechanisms underlying kiwifruit’s adaptation to stresses. 

Key words: kiwifruit , RAD23 ,  expression profile ,  drought stress ,  ubiquitin degradation