Journal of Integrative Agriculture

• •    下一篇

比较模拟和观测棉花蒸腾与气候因子的关系

  

  • 收稿日期:2024-10-30 修回日期:2025-02-20

Comparing simulated and observed cotton transpiration in relations to climate factors

Zeshan Zhang1, Pengzhong Zhang5#, Yongfan Chen1, Xuejiao Wang2, Mingfeng Yang3, Shuai Sun4, Yutong Zhang1, Sen Wang2, Fen Ji3, Chunrong Ji2, Dao Xiang3, Parhat Mamat5, Lizhen Zhang1, 5#    

  1. 1 Agricultural Meteorology Department, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China

    2 Xinjiang Agrometeorological Observatory, Urumqi 830002, China

    3 Wulanwusu Agrometeorological Station, Shihezi 832199, China

    4 Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China

    5 China National Cotton R&D Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China 

  • Received:2024-10-30 Revised:2025-02-20
  • About author:Zeshan Zhang, Email: zhangzeshan@cau.edu.cn; #Correspondence Lizhen Zhang, E-mail: zhanglizhen@cau.edu.cn; Pengzhong Zhang, E-mail: zhangpz@163.com
  • Supported by:

    This research was supported by the Key Research and Development Program of Xinjiang (2022B02001), the Xinjiang Science and Technology Major Project (2023A02003-5), Xinjiang Tianshan Talent Training Program (2023TSYCTD004), the National Natural Science Foundation of China (42105172), and Xinjiang Production and Construction Corps Key Areas Science and Technology Research Program (2020AB017).

摘要:

驱动作物模拟模型通常用于评估作物产量和灌溉管理策略,以提高农业用水效率。经过充分测试的模型可以作为指导农业实践的有力工具。本研究的目的是评估 AquaCrop 模型模拟滴灌条件下棉花蒸腾和水分利用的能力,并与田间茎流测量结果进行比较。在中国新疆进行了一项为期两年的棉花田间试验(2020-2021),包括两种行距和两种打顶方法。该模型充分估计了冠层覆盖率,归一化均方根误差 (nRMSE) 小于 5%,模型效率 (EF) 接近 1。模型对蒸腾的估算与所有年份和处理的茎流测量值(nRMSE=22.4%有良好的一致性。模型模拟的棉花水分利用效率(4.42 g m-2 mm-1)低于实际测量值(4.79 g m-2 mm-1)。在滴灌和地膜覆盖条件下,棉花在短而密的冠层结构中生长时,模型对作物系数的估计值有11.5%的高估,导致估算的蒸腾量略高于用茎流计测量的值。空气温度、水汽压差和辐射对棉花蒸腾有正面影响,而湿度负面影响。该模型可以捕捉蒸腾量随气候因素变化的趋势,但气候效应强于茎流的影响。总之,AquaCrop模型是优化棉花灌溉策略的有效工具。

Abstract:

Water-driven crop simulation models are commonly employed to evaluate crop yields and irrigation management strategies to improve agricultural water productivity.  Well-tested models can serve as powerful tools for guiding agricultural practices.  The objective of this study was to assess the capability of the AquaCrop model for simulation of cotton transpiration and water use under drip irrigation conditions comparing with field sap flow measurements.  A two-year field experiment (2020-2021) in cotton was conducted in Xinjiang China including two row spacing and two topping methods.  The model adequately estimated canopy cover with a normalized root mean square error (nRMSE) of less than 5% and a model efficiency (EF) close to 1.  The model estimation of transpiration obtained a good agreement with sap flow measurements (nRMSE=22.4%) across all years and treatments.  The model simulated water use efficiency (WUE, 4.42 g m-2 mm-1) of cotton were lower than those calculated from actual measurements with WUE of 4.79 g m-2 mm-1.  The estimated transpiration was slightly higher than that measured using sap flow meter due to an 11.5% of overestimation for crop coefficient in the model when cotton grew in short and dense canopy structure under drip irrigation and plastic film cover conditions.  Air temperature, vapor pressure difference and radiation had positive effects on cotton transpiration while humidity had negative effects.  The model could capture the trends of transpiration with climate factors, but the climatic effects were stronger than that of sap flow.  In conclusion, AquaCrop model is useful tool in optimizing cotton irrigation strategies.

Key words: AquaCrop , machine-harvested cotton , ,  , sap velocity ,  , chemical topping ,  , row spacing ,  , evapotranspiration