Journal of Integrative Agriculture

• •    下一篇

全基因组关联研究结合转录组分析鉴定出苦荞抗旱基因FtADH1

  

  • 修回日期:2024-11-04

Combining GWAS and RNA-Seq approaches identifies the FtADH1 gene for drought resistance in Tartary buckwheat

Jiayue He1, 2*, Yanhua Chen2*, Yanrong Hao2, Dili Lai2, Tanzim Jahan2, Yaliang Shi2, Hao Lin2, Yuqi He2, Md. Nurul Huda2, Jianping Cheng1, Kaixuan Zhang2, Jinbo Li3#, Jingjun Ruan1#, Meiliang Zhou2#    

  1. 1 College of Agriculture, Guizhou University, Guiyang 550025, China  

    2 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

    3 LuoYang Normal University, LuoYang 471934, China 

  • Revised:2024-11-04
  • About author:#Correspondence Jinbo Li, E-mail: jinbo406@126.com; Jingjun Ruan, E-mail: 523131814@qq.com; Meiliang Zhou, E-mail: zhoumeiliang@caas.cn *These authors contributed equally to this work.
  • Supported by:
    This research was supported by the National Natural Science Foundation of China (32372045), the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Provinc, China (Qiankehezhongyindi (2023) 008), the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, China (Qianjiaoji (2023) 007). 

摘要:

干旱严重制约了苦荞产业的发展,干旱灾害是影响苦荞幼苗生长、产量及品质的主要环境因素。然而,苦荞中与干旱耐受相关基因的分子机制目前仍较少被研究。乙醇脱氢酶基因(ADH)在植物中作为一个小的基因家族,在植物生长、发育及抵御逆境胁迫中发挥着重要的作用,但其在干旱胁迫中潜在的分子机制仍不清楚。本研究基于抗旱隶属函数值(MFVD)综合评价苦荞各个品种的抗旱性,通过全基因组关联研究(GWAS)结合转录组数据分析,鉴定到苦荞抗旱基因FtADH1。研究结果表明,在拟南芥和苦荞毛状根中过表达FtADH1可以通过促进根系伸长和清除活性氧来增强其干旱耐受能力。此外,我们通过pull-down联合质谱分析发现与FtADH1相互作用的蛋白,揭示了苦荞FtADH1的与S-腺苷甲硫氨酸SAM)合成酶蛋白FtSAMS1存在特异性相互作用。进一步的研究发现,在水分缺失胁迫处理下,过表达FtSAMS1可以显著增强苦荞毛状根中ADH酶活性和增加SAM含量。此外,FtSAMS1拟南芥和苦荞毛状根的过表达植物均表现出耐旱表型,这揭示了其FtADH1一致的生物学功能。进化变异分析表明,在荞麦属植物中,ADH1发生了基因重复和净化选择,这可能有助于提高该基因的适应性优势,如提高在栽培荞麦中的抗旱性。总之,我们的研究结果强调了的FtADH1在干旱胁迫下的重要功能,并且阐明了FtADH1FtSAMS1在干旱条件下的相互作用机制,阐明了FtADH1FtSAMS1之间的相互作用机制,并探讨了其在荞麦及其近缘种抗旱品种开发中的潜在应用价值。

Abstract:

 Drought is one of the major environmental constraints that significantly affects seedling emergence, yield, and quality of Tartary buckwheat, thereby hindering the development of its industry.  However, the molecular mechanisms underlying drought tolerance genes in Tartary buckwheat remain largely unexplored.  Alcohol dehydrogenase (ADH), one of the essential plant proteins, plays a crucial role in growth, development, and stress responses, but its specific role in drought resistance is still unclear.  In this study, we identified an ADH gene FtADH1, using a membership function value of drought tolerance (MFVD) combined with a genome-wide association study (GWAS) and transcriptomic profiles that confers drought tolerance in Tartary buckwheat. Our findings demonstrated that the overexpression of FtADH1 in Arabidopsis and Tartary buckwheat hairy roots enhances drought tolerance by promoting root elongation and mitigating elevated levels of reactive oxygen species (ROS).  Our findings demonstrated that FtADH1 can enhanced tolerance to drought stresses in both Tartary buckwheat and Arabidopsis.  This study identifies the FtADH1 as a new player in affecting ROS level and the stress response of Tartary buckwheat by regulating protective enzyme activities at a high level to scavenge ROS and modulating root growth under drought stress.  Further, we identified proteins interacting with FtADH1 through a prokaryotic expression pull-down assay combined with mass spectrometry, revealing that FtADH1 specifically interacts with the S-adenosyl-L-methionine (SAM) synthetase protein, FtSAMS1.  Overexpression of FtSAMS1 was found to enhance ADH enzymatic activity, leading to increased SAM content in overexpressing Tartary buckwheat hairy roots under water-deficit conditions.  Additionally, FtSAMS1 overexpression induced a drought-resistant phenotype in Arabidopsis and Tartary buckwheat hairy roots under drought stress, revealing the biological function of FtADH1. Evolutionary analysis indicates that ADH1 in Fagopyrum species has undergone significant evolutionary events, including duplication and purifying selection, which may contribute to functional diversification and adaptive advantages such as drought resistance in cultivated buckwheat.  In summary, this study proposes that FtADH1 is a key contributor to drought tolerance, and its interaction with FtSAMS1 holds potential for the development of drought-resistant varieties in Tartary buckwheat and its relative species.

Key words: Tartary buckwheat , FtADH1 , FtSAMS1 , drought , GWAS , hairy roots