Journal of Integrative Agriculture ›› 2025, Vol. 24 ›› Issue (5): 1800-1812.DOI: 10.1016/j.jia.2024.08.007

• • 上一篇    下一篇

BjuB05.GS1.4促进芥菜氮素同化并参与地上部NUE的驯化

  

  • 收稿日期:2023-09-18 修回日期:2024-08-16 接受日期:2024-03-20 出版日期:2025-05-20 发布日期:2025-04-14

BjuB05.GS1.4 promotes nitrogen assimilation and participates in the domestication of shoot nitrogen use efficiency in Brassica juncea

Rumeng Wang1*, Jinsong Luo1, 3*, Jian Zeng1, Yingying Xiong1, Tianchu Shu1, Dawei He1, Zhongsong Liu2#, Zhenhua Zhang1, 3#   

  1. 1 College of Resources, Hunan Agricultural University, Changsha 410128, China

    2 College of Agronomy, Hunan Agricultural University, Changsha 410128, China

    3 Yuelushan Laboratory, Changsha 410128, China

  • Received:2023-09-18 Revised:2024-08-16 Accepted:2024-03-20 Online:2025-05-20 Published:2025-04-14
  • About author:Rumeng Wang, E-mail: liangchenrm@163.com; Jinsong Luo, E-mail: 0609020317@163.com; #Correspondence Zhongsong Liu, E-mail: zsliu48@hunau.net; Zhenhua Zhang, E-mail: zhzh1468@163.com *These authors contributed equally to this study.
  • Supported by:
    This study was partially supported by the National Natural Science Foundation of China (U21A20236, 32072664), the Natural Science Foundation of Hunan Province, China (2022RC3053, 2021JC0001, 2021RC3086, 2022NK2009), the China Agriculture Research System (CARS-01-30), and the Innovation Foundation for Graduate of Hunan Agricultural University, China (2023XC116).

摘要:

阐明作物耐受低氮胁迫的生理和分子机制,促进氮素从衰老叶片向新叶的转移对提高芸薹属的氮素利用效率至关重要。谷氨酰胺合成酶(GS)参与植物叶片蛋白降解过程中释放的铵的重新同化过程,是我们研究的重要基因。在本研究中,我们通过水培试验发现了2个对低氮胁迫响应有差异的基因型芥菜:氮高效基因型芥菜(H141)和氮低效基因型芥菜(L65)。各项生理指标表明H141号芥菜氮素利用效率高的生理原因是它的地上部拥有较低的硝酸盐含量,较高的铵盐、游离氨基酸含量以及NR和GS活性。全基因组重测序数据表明在H65和L141之间有5,880个与NUE相关的基因存在多态性。这些基因参与了氨基酸代谢、碳水化合物代谢和能量代谢。单倍型分析结果表明在芥菜群体中BjuB05.GS1.4存在两种单倍型,Hap1和Hap2在5’非翻译区(UTR)和3’UTR的调控区以及内含子中具有多个单核苷酸多态性或插入/缺失,并且Hap1芥菜群体的地上部NUE显著低于Hap2。这两种单倍型导致芥菜不同遗传群体的地上部NUE存在差异,并与当地土壤氮含量有关,这表明它可能有助于芥菜适应不同的地理环境。因此,我们的研究结果揭示了不同芥菜NUE基因型的生理和分子机制,并证明了在芥菜中进行NUE育种的巨大潜力。

Abstract:

Elucidating crops’ physiological and molecular mechanisms to adapt to low nitrogen environment and promoting nitrogen transfer from senescent leaves to new leaves is crucial in improving Brassica’s nitrogen use efficiency (NUE).  Glutamine synthetase gene (GS) plays a vital role in helping plants reassimilate ammonium released from protein degradation in leaves, and it was the focus of our research on this topic.  In this study, we identified high (H141) and low (L65) NUE genotypes of Brassica juncea with different responses to low-nitrogen stress.  We found that H141 has a lower nitrate content but higher ammonium and free amino acid contents as well as higher nitrate reductase and GS activities in the shoots.  These physiological indicators are responsible for the high NUE of H141.  Whole-genome resequencing data revealed that 5,880 genes associated with NUE are polymorphic between H141 and L65.  These genes participate in various amino acid, carbohydrate, and energy metabolic pathways.  Haplotype analysis revealed two haplotypes for BjuB05.GS1.4, Hap1 and Hap2, which have multiple single nucleotide polymorphisms or insertions/deletions in the regulatory regions of the 5´ and 3´ untranslated regions and introns.  Furthermore, the shoot NUE of Hap1 is significantly lower than that of Hap2.  These two haplotypes of BjuB05.GS1.4 lead to differences in the shoot NUEs of different genetic populations of mustard and are associated with the local soil nitrogen content, suggesting that they might help mustard to adapt to different geographic localities.  In conclusion, the results of our study shed light on the physiological and molecular mechanisms underlying different mustard NUE genotypes and demonstrate the enormous potential of NUE breeding in Bjuncea.


Key words: Brassica juncea , nitrogen use efficiency ,  BjuB05.GS1.4 ,  haplotype ,  genotype