Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araujo A C, et al. 2016. The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nature Genetics, 48, 438-446.
Bertioli D J, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G, Leal-Bertioli S C M, Ren L, Farmer A D, Pandey M K, Samoluk S S, Abernathy B, Agarwal G, Ballén-Taborda C, Cameron C, Campbell J, Chavarro C, Chitikineni A, Chu Y, Dash S, et al. 2019. The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nature Genetics, 51, 877-884.
Carter E T , Rowland D L, Tillman B L, Erickson J E, Grey T L, Gillett-Kaufman J L, Clark M W. 2017. Pod maturity in the shelling process. Peanut Science, 44, 26–34.
Chavarro C, Chu Y, Holbrook C, Isleib T, Bertioli D, Hovav R, Butts C, Lamb M, Sorensen R, Jackson S A, Peggy O-A. 2020. Pod and seed trait qtl identification to assist breeding for peanut market preferences. G3 (Bethesda), 10, 2297-2315.
Chen C Y, Barkley N A, Wang M L, Holbrook C C, Dang P M. 2014. Registration of purified accessions for the U.S. peanut mini-core germplasm collection. Journal of Plant Registrations, 8, 77-85.
Chen Z L, Wang B B, Dong X M, Liu H, Ren L H. 2014. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics, 15, 433.
Chu Y, Chee P, Isleib T G, Holbrook C C, Ozias-Akins P. 2020. Major seed size QTL on chromosome A05 of peanut (Arachis hypogaea) is conserved in the US mini core germplasm collection. Molecular Breeding, 40, 6.
Dash S, Cannon E K S, Kalberer S R, Farmer A D, Cannon S B. 2016. Peanutbase and other bioinformatic resources for peanut. Peanuts, AOCS Press, 241-252.
Gangurde S S, Wang H, Yaduru S, Pandey M K, Fountain J C, Chu Y, Isleib T, Holbrook C C, Xavier A, Culbreath A K, Ozias-Akins P, Varshney R K, Guo B. 2020. Nested-association mapping (NAM)-based genetic dissection uncovers candidate genes for seed and pod weights in peanut (Arachis hypogaea). Plant Biotechnology Journal, 18, 1457-1471.
Holland J B. 2007. Genetic architecture of complex traits in plants. Current Opinion in Plant Biology, 10, 156-161.
Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B. 2015. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 128, 1103–1115.
Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T. 2009. High-throughput genotyping by whole-genome resequencing. Genome Research, 19, 1068-1076.
Jiang H. 2006. Descriptors and data standard for peanut (Arachis spp.). China Agriculture Press, 11-36. (in Chinese)
Kai W, Li M, Hakon H. 2010. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research, 16, e164.
Kunta S, Chu Y, Levy Y, Harel A, Hovav R. 2022. Identification of a major locus for flowering pattern sheds light on plant architecture diversification in cultivated Peanut. Theoretical and Applied Genetics, 135, 1767-1777.
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754-1760.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R. 2009. Genome project data processing S: The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078-2079.
Li L, Cui S, Dang P, Yang X, Wei X, Chen K, Liu L, Chen C Y. 2022. GWAS and bulked segregant analysis reveal the Loci controlling growth habit-related traits in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 23, 1-13.
Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K, Wang J. 2009a. SNP detection for massively parallel whole-genome resequencing. Genome Research, 19, 1124-1132.
Li R, Yu C, Lam T W, Yiu S M, Kristiansen K, Wang J. 2009b. SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966-1967.
Li W, Liu N, Huang L, Chen Y, Guo J, Yu B, Luo H, Zhou X, Huai D, Chen W, Yan L, Wang X, Lei Y, Liao B, Jiang H. 2022. Stable major QTL on chromosomes A07 and A08 increase shelling percentage in peanut (Arachis hypogaea L.). The Crop Journal, 10, 820-829.
Lu Y, Zhang S, Shah T, Xie C, Hao Z, Li X, Farkhari M, Ribaut J M, Cao M, Rong T. 2010. Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proceedings of the National Academy of Sciences of the United States of America, 107, 19585-19590.
Lucia R, Gomes F, Celis A, Lopes A. 2005. Correlations and path analysis in peanut. Crop Breeding & Applied Biotechnology, 5, 105-110.
Luo H, Guo J, Ren X, Chen W, Huang L, Zhou X, Chen Y, Liu N, Xiong F, Lei Y, Liao B, Jiang H. 2018. Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 131, 267-282.
Luo H, Pandey M K, Khan A W, Guo J, Wu B, Cai Y, Huang L, Zhou X, Chen Y, Chen W, Liu N, Lei Y, Liao B, Varshney R K, Jiang H. 2019. Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut (Arachis hypogaea L.). Plant Biotechnology Journal, 17, 1248-1260.
Luo H, Xu Z, Li Z, Li X, Lv J, Ren X, Huang L, Zhou X, Chen Y, Yu J. 2017. Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theoretical and Applied Genetics, 130, 1635–1648.
Meng X, Zhang J, Cui S, Chen C Y, Mu G, Hou M, Yang X, Liu L. 2021. QTL mapping and QTL × Environment interaction analysis of pod and seed related traits in cultivated peanut (Arachis hypogaea L.). Acta Agronomica Sinica, 47, 1874-1890. (in Chinese)
Meuwissen T, Goddard M. 2010. Accurate prediction of genetic values for complex traits by whole-genome resequencing. Genetics, 185, 622-623.
Pawan K, Pandey M K, Wang H, Feng S, Qiao L, Culbreath A K, Sandip K, Wang J, Corley H C, Zhuang W. 2016. Mapping quantitative trait loci of resistance to tomato spotted wilt virus and leaf spots in a recombinant inbred line population of peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022. PLoS ONE, 11, e0158452.
Ravi K, Vadez V, Isobe S, Mir R R, Guo Y, Nigam S N, Gowda M, Radhakrishnan T, Bertioli D J, Knapp S J. 2011. Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theoretical and Applied Genetics, 122, 1119-1132.
Robledo G, Lavia G I, Seijo G. 2009. Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theoretical and Applied Genetics, 118, 1295-1307.
Verhertbruggen Y, Bouder A, Vigouroux J, Alvarado C, Geairon A, Guillon F, Wilkinson M D, Stritt F, Pauly M, Lee M Y, Mortimer J C, Scheller H V, Mitchell R A C, Voiniciuc C, Saulnier L, Chateigner-Boutin A L. 2021. The TaCslA12 gene expressed in the wheat grain endosperm synthesizes wheat-like mannan when expressed in yeast and Arabidopsis. Plant Science, 302, 110693.
Wang L, Yang X, Cui S, Mu G, Sun X, Liu L, Li Z. 2019. QTL mapping and QTL × environment interaction analysis of multi-seed pod in cultivated peanut (Arachis hypogaea L.). The Crop Journal, 7, 249-260.
Wang Z, Yan L, Chen Y, Wang X, Huai D, Kang Y, Jiang H, Liu K, Lei Y, Liao B. 2022. Detection of a major QTL and development of KASP markers for seed weight by combining QTL-seq, QTL-mapping and RNA-seq in peanut. Theoretical and Applied Genetics, 135, 1779-1795.
Zhang C, Zhou Z, Yong H, Zhang X, Hao Z, Zhang F, Li M, Zhang D, Li X, Wang Z. 2017. Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping. Theoretical and Applied Genetics, 130, 1011-1029.
Zhang S, Hu X, Miao H, Chu Y, Cui F, Yang W, Wang C, Shen Y, Xu T, Zhao L, Zhang J, Chen J. 2019. QTL identification for seed weight and size based on a high-density SLAF-seq genetic map in peanut (Arachis hypogaea L.). BMC Plant Biology, 19, 537.
Zhuang W, Chen H, Yang M, Wang J, Pandey M K, Zhang C, Chang W C, Zhang L, Zhang X, Tang R, Garg V, Wang X, Tang H, Chow C N, Wang J, Deng Y, Wang D, Khan A W, Yang Q, Cai T, et al. 2019. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics, 51, 865-876.
Zou C, Wang P, Xu Y. 2016. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnology Journal, 14, 1941-1955.
|