Journal of Integrative Agriculture
• • 下一篇
修回日期:
2024-03-25
Jienan Han1, Ran Li1, Ze Zhang1, 2, Shiyuan Liu1, Qianqian Liu1, Zhennan Xu1, Zhiqiang Zhou 1, Xin Lu1, Xiaochuan Shangguan1, 2, Tingfang Zhou1, 2, Jianfeng Weng1, Zhuanfang Hao1, Degui Zhang1, Hongjun Yong1, Jingyu Xu2, Mingshun Li1#, Xinhai Li1, 2#
1 Institute of Crop Science, Chinese Academy of Agricultural Science/State Key Laboratory of Crop Gene Resources and Breeding, Beijing 100081, China
2 College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
Revised:
2024-03-25
About author:
#Correspondence Mingshun Li, Email: limingshun@caas.cn; Xinhai Li, E-mail: lixinhai@caas.cn
摘要: 淀粉是籽粒的主要贮藏物质,对玉米(Zea mays L.)的产量和品质至关重要。为满足未来粮食生产需求,了解玉米籽粒淀粉含量(SC)自然变异的遗传基础对于玉米育种意义重大。通过全基因组关联分析(GWAS),基于2年籽粒SC表型值分别发现84个和96个显著关联位点,关联区间包含185个候选基因。其中,ZmMYB71编码MYB转录因子,与淀粉合成基因共表达频数表现最高。本研究表明ZmMYB71是定位于细胞核的转录抑制因子,突变体籽粒SC增加幅度大于2.32%,但直链淀粉含量或百粒重基本不受影响。相较于野生型,zmmyb71突变体Sh1、Sh2和GBSSI表达量分别提高了1.56倍、1.45倍和1.32倍,与RNA测序结果一致。进一步研究表明ZmMYB71可能通过GATATC和TTAGGG基序直接抑制淀粉合成基因的启动子活性。此外,我们发现ZmMYB71优异单体型Hap1在高淀粉BSSS和PB类群占比超过55%,而在低淀粉PA类群中仅为7.14%。比较不同育种阶段Hap1单体型出现频率,在1980~1990年和2000年自交系中分别占28.57%和27.94%,而2010年后显著增加至40.28%。本研究为玉米籽粒淀粉的自然变异提供了宝贵信息,同时我们认为ZmMYB71作为负调控因子有潜力应用于玉米籽粒SC遗传改良。
. 全基因组关联和基因共表达分析发掘ZmMYB71调控玉米籽粒淀粉合成[J]. Journal of Integrative Agriculture, DOI: 10.1016/j.jia.2024.03.013.
Jienan Han, Ran Li, Ze Zhang, Shiyuan Liu, Qianqian Liu, Zhennan Xu, Zhiqiang Zhou, Xin Lu, Xiaochuan Shangguan, Tingfang Zhou, Jianfeng Weng, Zhuanfang Hao, Degui Zhang, Hongjun Yong, Jingyu Xu, Mingshun Li, Xinhai Li. Genome-wide association and co-expression uncovered ZmMYB71 controls kernel starch content in maize[J]. Journal of Integrative Agriculture, DOI: 10.1016/j.jia.2024.03.013.
Agarwal M, Hao Y, Kapoor A, Dong C H, Fujii H, Zheng X, Zhu J K. 2006. A R2R3 type MYB transcription factor is involved in the cold regulation of cbf genes and in acquired freezing tolerance. Journal of Biological Chemistry, 281, 37636-37645. Aoki K, Ogata Y, Shibata D. 2007. Approaches for extracting practical information from gene co-expression networks in plant biology. Plant and Cell Physiology, 48, 381-390. Barkai N, Ihmels J, Levy R. 2004. Principles of transcriptional control in the metabolic network of saccharomyces cerevisiae. Nature Biotechnology, 22, 86-92. Baxter C E L, Costa M M R, Coen E S. 2007. Diversification and co-option of RAD-like genes in the evolution of floral asymmetry. Plant Journal, 52, 105-113. Beitel G J, Lambie E J, Horvitz H R. 2000. The C. elegans gene lin-9,which acts in an Rb-related pathway, is required for gonadal sheath cell development and encodes a novel protein. Gene, 254, 253-263. Chen J, Yi Q, Cao Y, Wei B, Zheng L, Xiao Q, Xie Y, Gu Y, Li Y, Huang H, Wang Y, Hou X, Long T, Zhang J, Liu H, Liu Y, Yu G, Huang Y. 2016. ZmbZIP91 regulates expression of starch synthesis-related genes by binding to actcat elements in their promoters. Journal of Experimental Botany, 67, 1327-1338. Chen J, Zeng B, Zhang M, Xie S, Wang G, Hauck A, Lai J. 2014. Dynamic transcriptome landscape of maize embryo and endosperm development. Plant Physiology, 166, 252-264. Chen W, Chen L, Zhang X, Yang N, Guo J, Wang M, Ji S, Zhao X, Yin P, Cai L, Xu J, Zhang L, Han Y, Xiao Y, Xu G, Wang Y, Wang S, Wu S, Yang F, Jackson D, et al. 2022. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science, 375, eabg7985. Chen W, Zheng Q, Li J, Liu Y, Xu L, Zhang Q, Luo Z. 2021. DkMYB14 is a bifunctional transcription factor that regulates the accumulation of proanthocyanidin in persimmon fruit. Plant Journal, 106, 1708-1727. Coleman C E, Clore A M, Ranch J P, Higgins R, Lopes M A, Larkins B A. 1997. Expression of a mutant alpha-zein creates the floury2 phenotype in transgenic maize. Proceedings of the National Academy of Sciences of the United States of America, 94, 7094-7097. Cook J P, McMullen M D, Holland J B, Tian F, Bradbury P, Ross-Ibarra J, Buckler E S, Flint-Garcia S A. 2012. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiology, 158, 824-834. Dong Q, Xu Q, Kong J, Peng X, Zhou W, Chen L, Wu J, Xiang Y, Jiang H, Cheng B. 2019. Overexpression of ZmbZIP22 gene alters endosperm starch content and composition in maize and rice. Plant Science, 283, 407-415. Duan H, Li J, Sun L, Xiong X, Xu S, Sun Y, Ju X, Xue Z, Gao J, Wang Y, Xie H, Ding D, Zhang X, Tang J. 2023. Identification of novel loci associated with starch content in maize kernels by a genome-wide association study using an enlarged SNP panel. Molecular Breeding, 43, 91. Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, Debeaujon I, Routaboul J M, Alboresi A, Weisshaar B, Lepiniec L. 2008. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant Journal, 55, 940-953. Fu F F, Xue H W. 2010. Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator. Plant Physiology, 154, 927-938. Giroux M J, Hannah L C. 1994. ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize. Molecular & General Genetics, 243, 400-408. Gómez E, Royo J, Guo Y, Thompson R, Hueros G. 2002. Establishment of cereal endosperm expression domains: Identification and properties of a maize transfer cell-specific transcription factor, ZmMRP-1. Plant Cell, 14, 599-610. Guan J C, Koch K E, Suzuki M, Wu S, Latshaw S, Petruff T, Goulet C, Klee H J, McCarty D R. 2012. Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiology, 160, 1303-1317. Han J, Guo Z, Wang M, Liu S, Hao Z, Zhang D, Yong H, Weng J, Zhou Z, Li M, Li X. 2022. Using the dominant mutation gene ae1-5180 (amylose extender) to develop high-amylose maize. Molecular Breeding, 42, 57. Hickey L T, Hafeez A N, Robinson H, Jackson S A, Leal-Bertioli S C M, Tester M, Gao C, Godwin I D, Hayes B J, Wulff B B H. 2019. Breeding crops to feed 10 billion. Nature Biotechnology, 37, 744-754. Hirai M Y, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa O I, Shibata D, Saito K. 2007. Omics-based identification of Arabidopsis MYB transcription factors regulating aliphatic glucosinolate biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 104, 6478-6483. Hu S, Wang M, Zhang X, Chen W, Song X, Fu X, Fang H, Xu J, Xiao Y, Li Y, Bai G, Li J, Yang X. 2021. Genetic basis of kernel starch content decoded in a maize multi-parent population. Plant Biotechnology Journal, 19, 2192-2205. Hwang S K, Koper K, Satoh H, Okita T W. 2016. Rice endosperm starch phosphorylase (pho1) assembles with disproportionating enzyme (dpe1) to form a protein complex that enhances synthesis of malto-oligosaccharides. Journal of Biological Chemistry, 291, 19994-20007. Knapp S J, Stroup W W, Ross W M. 1985. Exact confidence intervals for heritability on a progeny mean basis. Crop Science, 25, 192-194. Li B, Xiao X, Yang Y, Zhao H, Luo R, Wu G, Rong Z. 2021. Current situation of standard methods and research progress of starch content determination at china and abroad. Journal of Food Safety and Quality, 12, 3830-3839. (in Chinese) Li C, Huang Y, Huang R, Wu Y, Wang W. 2017. The genetic architecture of amylose biosynthesis in maize kernel. Plant Biotechnology Journal, 16, 688-695. Li C, Yue Y, Chen H, Qi W, Song R. 2018. The ZmbZIP22 transcription factor regulates 27-kd γ-zein gene transcription during maize endosperm development. Plant Cell, 30, 2402-2424. Li J, Baroja-Fernández E, Bahaji A, Muñoz F J, Ovecka M, Montero M, Sesma M T, Alonso-Casajús N, Almagro G, Sánchez-López A M, Hidalgo M, Zamarbide M, Pozueta-Romero J. 2013. Enhancing sucrose synthase activity results in increased levels of starch and adp-glucose in maize (Zea mays L.) seed endosperms. Plant and Cell Physiology, 54, 282-294. Li Y. 1998. Development and germplasm base of maize hybrids in china [Zea mays L.]. Maydica, 43, 259-269. Lin F, Zhou L, He B, Zhang X, Dai H, Qian Y, Ruan L, Zhao H. 2019. QTL mapping for maize starch content and candidate gene prediction combined with co-expression network analysis. Theoretical and Applied Genetics, 132, 1931-1941. Liu C, Hao Z, Zhang D, Xie C, Li M, Zhang X, Yong H, Zhang S, Weng J, Li X. 2015. Genetic properties of 240 maize inbred lines and identity-by-descent segments revealed by high-density snp markers. Molecular Breeding, 35, 1-12. Liu N, Xue Y, Guo Z, Li W, Tang J. 2016. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels. Frontiers in Plant Science, 7, 1046. Liu P, Zhu Y, Liu H, Liang Z, Zhang M, Zou C, Yuan G, Gao S, Pan G, Shen Y, Ma L. 2022. A combination of a genome-wide association study and a transcriptome analysis reveals circrnas as new regulators involved in the response to salt stress in maize. International Journal of Molecular Sciences, 23, 9755. Liu S, Li R, Shang G, Guo Z, Liu D, Li M, Weng J, Xu J, Han J. 2023. Bioinformatics and expression analysis of myb-related gene family in maize. Molecular Plant Breeding, 1-26. (in Chinese) Liu Y, Zhang Z, Fang K, Shan Q, He L, Dai X, Zou X, Liu F. 2022. Genome-wide analysis of the MYB-related transcription factor family in pepper and functional studies of CaMYB37 involvement in capsaicin biosynthesis. International Journal of Molecular Sciences, 23, 11667. Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25, 402-408. Lu X, Zhou Z, Wang Y, Wang R, Hao Z, Li M, Zhang D, Yong H, Han J, Wang Z, Weng J, Zhou Y, Li X. 2022. Genetic basis of maize kernel protein content revealed by high-density bin mapping using recombinant inbred lines. Frontiers in Plant Science, 13, 1045854. Ma J, Jiang Q, Zhao Q, Zhao S, Lan X, Dai S, Lu Z, Liu C, Wei Y, Zheng Y. 2013. Characterization and expression analysis of waxy alleles in barley accessions. Genetica, 141, 227-238. Ma L, Zhang M, Chen J, Qing C, He S, Zou C, Yuan G, Yang C, Peng H, Pan G, Lübberstedt T, Shen Y. 2021. GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings. Theoretical and Applied Genetics, 134, 3305-3318. MacNeill G J, Mehrpouyan S, Minow M A A, Patterson J A, Tetlow I J, Emes M J. 2017. Starch as a source, starch as a sink: The bifunctional role of starch in carbon allocation. Journal of Experimental Botany, 68, 4433-4453. Matsui K, Umemura Y, Ohme-Takagi M. 2008. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. Plant Journal, 55, 954-967. Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. 2010. Eukaryotic chromosome DNA replication: Where, when, and how? Annual Review of Biochemistry, 79, 89-130. McMullen M, Kresovich S, Villeda H, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell S E, Peterson B, Pressoir G, et al. 2009. Genetic properties of the maize nested association mapping population. Science, 325, 737-740. Méchin V, Thévenot C, Le Guilloux M, Prioul J L, Damerval C. 2007. Developmental analysis of maize endosperm proteome suggests a pivotal role for pyruvate orthophosphate dikinase. Plant Physiology, 143, 1203-1219. Nilsson L, Müller R, Nielsen T. 2007. Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in arabidopsis thaliana. Plant Cell and Environment, 30, 1499-1512. Niu B, Deng H, Li T, Sharma S, Yun Q, Li Q, E Z, Chen C. 2020. OsbZIP76 interacts with osNF-YBs and regulates endosperm cellularization in rice (Oryza sativa). Journal of Integrative Plant Biology, 62, 1983-1996. Ohdan T, Francisco P B, Sawada T, Hirose T, Terao T, Satoh H, Nakamura Y. 2005. Expression profiling of genes involved in starch synthesis in sink and source organs of rice. Journal of Experimental Botany, 56, 3229-3244. Panahabadi R, Ahmadikhah A, McKee L S, Ingvarsson P K, Farrokhi N. 2021. Genome-wide association mapping of mixed linkage (1,3;1,4)-β-glucan and starch contents in rice whole grain. Frontiers in Plant Science, 12, 665745. Persson S, Wei H, Milne J, Page G P, Somerville C R. 2005. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proceedings of the National Academy of Sciences of the United States of America, 102, 8633-8638. Pfister B, Zeeman S C. 2016. Formation of starch in plant cells. Cellular and Molecular Life Sciences, 73, 2781-2807. Prioul J L, Méchin V, Lessard P, Thévenot C, Grimmer M, Chateau-Joubert S, Coates S, Hartings H, Kloiber-Maitz M, Murigneux A, Sarda X, Damerval C, Edwards K J. 2008. Joint transcriptomic, proteomic and metabolic analysis of maize endosperm development and starch filling. Plant Biotechnology Journal, 6, 855-869. Rubio V, Linhares F, Solano R, Martín A C, Iglesias J, Leyva A, Paz-Ares J. 2001. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes & Development, 15, 2122-2133. Schupp N, Ziegler P. 2004. The relation of starch phosphorylases to starch metabolism in wheat. Plant and Cell Physiology, 45, 1471-1484. She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K I, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, et al. 2010. A novel factor Floury endosperm2 is involved in regulation of rice grain size and starch quality. The Plant Cell, 22, 3280-3294. Sun Q, Zhang S, Li X, Meng Z, Ci X, Zhang D, Hao Z, Weng J, Bai L, Li M. 2014. The trend of quality traits of maize varieties released extensively in different eras in china. Scientia Agricultura Sinica, 47, 2723-2730. (in Chinese) Tetlow I J, Bertoft E. 2020. A review of starch biosynthesis in relation to the building block-backbone model. International Journal of Molecular Sciences, 21, 7011. Tu X, Mejía-Guerra M K, Valdes Franco J A, Tzeng D, Chu P, Shen W, Wei Y, Dai X, Li P, Buckler E S, Zhong S. 2020. Reconstructing the maize leaf regulatory network using ChIP-seq data of 104 transcription factors. Nature Communications, 11, 5089. Wang J, Xu H, Zhu Y, Liu Q, Cai X. 2013. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm. Journal of Experimental Botany, 64, 3453-3466. Wang L, Lu W, Ran L, Dou L, Yao S, Hu J, Fan D, Li C, Luo K. 2019. R2R3-MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in populus tomentosa. Plant Journal, 99, 733-751. Wang Q, Wang M, Chen J, Qi W, Lai J, Ma Z, Song R. 2022. ENB1 encodes a cellulose synthase 5 that directs synthesis of cell wall ingrowths in maize basal endosperm transfer cells. Plant Cell, 34, 1054-1074. Wang Y, Mu C, Li X, Duan C, Wang J, Lu X, Li W, Xu Z, Sun S, Zhang A, Zhou Z, Wen S, Hao Z, Han J, Qu J, Du W, Li F, Weng J. 2023. Genome-wide association and transcriptome reveal genetic basis for southern corn rust in maize. Journal of Integrative Agriculture. Wei S, Li X, Lu Z, Zhang H, Ye X, Zhou Y, Li J, Yan Y, Pei H, Duan F, Wang D, Chen S, Wang P, Zhang C, Shang L, Zhou Y, Yan P, Zhao M, Huang J, Bock R, et al. 2022. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science (American Association for the Advancement of Science), 377, eabi8455. White-Cooper H, Leroy D, MacQueen A, Fuller M T. 2000. Transcription of meiotic cell cycle and terminal differentiation genes depends on a conserved chromatin associated protein, whose nuclear localisation is regulated. Development, 127, 5463-5473. Wu J, Lawit S J, Weers B, Sun J, Mongar N, Van H J, Melo R, Meng X, Rupe M, Clapp J, Collet K H, Trecker L, Roesler K, Peddicord L, Thomas J, Hunt J, Zhou W, Hou Z, Wimmer M, Jantes J, et al. 2019. Overexpression of zmm28 increases maize grain yield in the field. Proceedings of the National Academy of Sciences of the United States of America, 116, 23850-23858. Wu W, Liu X, Wang M, Meyer R S, Luo X, Ndjiondjop M N, Tan L, Zhang J, Wu J, Cai H, Sun C, Wang X, Wing R A, Zhu Z. 2017. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during african rice domestication. Nature Plants, 3, 17064. Wu Y, Pu C, Lin H, Huang H, Huang Y, Hong C, Chang M, Lin Y. 2015. Three novel alleles of floury endosperm2 ( flo2 ) confer dull grains with low amylose content in rice. Plant Science, 233, 44-52. Xiao Q, Wang Y, Li H, Zhang C, Wei B, Wang Y, Huang H, Li Y, Yu G, Liu H, Zhang J, Liu Y, Hu Y, Huang Y. 2021. Transcription factor ZmNAC126 plays an important role in transcriptional regulation of maize starch synthesis-related genes. Crop Journal, 9, 192-203. Xiao Y, Liu H, Wu L, Warburton M, Yan J. 2017. Genome-wide association studies in maize: Praise and stargaze. Molecular Plant, 10, 359-374. Xiao Y, Thatcher S, Wang M, Wang T, Beatty M, Zastrow‐Hayes G, Li L, Li J, Li B, Yang X. 2016. Transcriptome analysis of near-isogenic lines provides molecular insights into starch biosynthesis in maize kernel. Journal of Integrative Plant Biology, 58, 713-723. Xie C, Zhang S, Li M, Li X, Hao Z, Bai L, Zhang D, Liang Y. 2007. Inferring genome ancestry and estimating molecular relatedness among 187 chinese maize inbred lines. Journal of Genetics and Genomics, 34, 738-748. Xu J, Zhang X, Xue H. 2016. Rice aleurone layer specific OsNF-YB1 regulates grain filling and endosperm development by interacting with an ERF transcription factor. Journal of Experimental Botany, 67, 6399-6411. Xu X, Wang Z, Xu S, Xu M, He L, Zhang J, Luo Z, Xie X, Wu M, Yang J. 2022. Identifying loci controlling total starch content of leaf in nicotiana tabacum through genome-wide association study. Functional & Integrative Genomics, 22, 537-552. Xu Z, Zhou Z, Cheng Z, Zhou Y, Wang F, Li M, Li G, Li W, Du Q, Wang K, Lu X, Tai Y, Chen R, Hao Z, Han J, Chen Y, Meng Q, Kong X, Tie S, Mu C, et al. 2023. A transcription factor ZmGLK36 confers broad resistance to maize rough dwarf disease in cereal crops. Nature Plants, 9, 1720-1733. Yang X, Wu F, Lin X, Du X, Chong K, Gramzow L, Schilling S, Becker A, Theißen G, Meng Z. 2012. Live and let die - the bsister mads-box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa). PLoS ONE, 7, e51435. Yoo S, Cho Y, Sheen J. 2007. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565-1572. Yu G, Shoaib N, Xie Y, Liu L, Mughal N, Li Y, Huang H, Zhang N, Zhang J, Liu Y, Hu Y, Liu H, Huang Y. 2022. Comparative study of starch phosphorylase genes and encoded proteins in various monocots and dicots with emphasis on maize. International Journal of Molecular Sciences, 23, 4518. Zhang J, Chen J, Yi Q, Hu Y, Liu H, Liu Y, Huang Y. 2014. Novel role of ZmaNAC36 in co-expression of starch synthetic genes in maize endosperm. Plant Molecular Biology, 84, 359-369. Zhang N, Chen S, Adnan, Wang X, Hussain S, Cheng Y, Li Y, Yuan Y, Wang C, Lin R, Zhang H, Wang J, Wang T, Wang S. 2022. AtEAU1 and AtEAU2, two EAR motif-containing ABA up-regulated novel transcription repressors regulate ABA response in Arabidopsis. International Journal of Molecular Sciences, 23, 9053. Zhang Z, Dong J, Ji C, Wu Y, Messing J. 2019. NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proceedings of the National Academy of Sciences of the United States of America, 116, 11223-11228. Zhang Z, Zheng X, Yang J, Messing J, Wu Y. 2016. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proceedings of the National Academy of Sciences of the United States of America, 113, 10842-10847. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||