Journal of Integrative Agriculture

• •    下一篇

全基因组分析揭示了花生AhCN34基因参与青枯病抗性研究

  

  • 修回日期:2024-03-22

Genome-wide analysis of AhCN genes reveals the AhCN34 involved in bacterial wilt resistance in peanut

Kai Zhao, Yanzhe Li, Zhan Li, Zenghui Cao, Xingli Ma, Rui Ren, Kuopeng Wang, Lin Meng, Yang Yang, Miaomiao Yao, Yang Yang, Xiaoxuan Wang, Jinzhi Wang, Sasa Hu, Yaoyao Li, Qian Ma, Di Cao, Kunkun Zhao, Ding Qiu, Fangping Gong, Zhongfeng Li, Xingguo Zhang, Dongmei Yin#   

  1. College of Agronomy & Peanut Functional Genome and Molecular Breeding Engineering, Henan Agricultural University, Zhengzhou 450046, China
  • Revised:2024-03-22
  • About author:Kai Zhao, E-mail: zhaok816@163.com; #Correspondence Dongmei Yin, Tel: +86-371-56990188, E-mail: yindm@henau.edu.cn

摘要: 花生(Arachis hypogaea L.)青枯病是一种严重威胁花生产量和品质的细菌性土传病害。核苷酸结合富亮氨酸重复序列(NBS-LRR)蛋白是一类植物特异性免疫受体,可识别病原体分泌的效应分子并激活免疫反应以抵抗病原体侵染。然而,在花生中AhCN基因CN是一类缺乏LRR结构域的NLR基因)的确切功能尚不清楚。本研究通过系统进化发育分析,共鉴定出150AhCN基因,划分为9个亚家族,发现AhCN基因表现出高度保守的结构特征,并参与植物激素信号转导和防御反应。接种青枯菌后,高抗性花生品种H108’在株高、主茎粗和鲜重等生理指标上显著高于感病品种H107’,这可能是由于青枯菌在维管束中的增殖和扩散受到抑制造成的。在遭受青枯菌侵染和植物激素处理后,q-PCR验证显示,H107相比,AhCN34H108显著上调。重要的是,在叶片中过表达AhCN34增强了花生对青枯病的抗性。以上结果表明,AhCN34在花生抗病育种中具备一定的潜力,为今后花生高效遗传育种提供理论依据。

Abstract: Peanut (Arachis hypogaea L.) bacterial wilt (BW), caused by Ralstonia solanacearum (RS), is a devastating soil-borne disease that poses a significant threat to peanut yield and quality.  Nucleotide-binding leucine-rich repeat (NBS-LRR) proteins are a class of plant-specific immune receptors that recognize pathogen-secreted effector molecules and activate immune responses to resist pathogen infections.  However, the precise functions of AhCN genes (CN is a class of NLR genes lacking LRR structural domains) in peanut plants are not fully understood.  In this study, a total of 150 AhCN genes were identified and classified into nine subfamilies based on a systematic phylogenetic analysis.  The AhCN genes showed highly conserved structural features; promoter cis-elements indicated involvement in plant hormone signaling and defense responses.  Following inoculation with RS, the highly resistant peanut variety ‘H108’ significantly outperformed the susceptible variety ‘H107’ in physiological indicators such as plant height, main stem diameter, and fresh weight, likely due to inhibition of bacterial proliferation and diffusion in the stem vascular bundle.  AhCN34 was found to be significantly upregulated in H108 compared to H107 during plant infection and in response to treatment with each of three plant hormones.  Importantly, AhCN34 overexpression in peanut leaves enhanced their resistance to BW.  These findings demonstrate the great potential of AhCN34 for applications in peanut resistance breeding.  Our identification and characterization of AhCN genes provide insights into the mechanisms underlying peanut BW resistance and inform future research into genetic methods of improving peanut BW resistance.

Key words: peanut , bacterial wilt ,  , resistance ,  , NLR genes ,  , disease