Bai G H, Shaner G. 2004. Management and resistance in wheat and barley to Fusarium head blight. Annual Review of Phytopathology, 42, 135-161.
Bechtel D B, Kaleikau L A, Gaines R L, Seitz L M. 1985. The effect of Fusarium graminearum infection on wheat kernels. Cereal Chemistry, 62, 191-197.
Bublitz M, Kjelleru L, Cohrt K O H, Gordon S, Winther A M L. 2018. Tetrahydrocarbazoles are a novel class of potent P-type ATPase inhibitors with antifungal activity. PLoS One, 13, e0188620.
Bublitz M, Morth J P, Nissen P. 2011. P-type ATPases at a glance. Journal of Cell Science, 124, 2515-2519.
Chen Y, Wang W X, Zhang A F, Gu C Y, Zhou M G, Gao T C. 2011. Activity of the Fungicide JS399-19 against Fusarium head blight of wheat and the risk of resistance. Agricultural Science in China, 10, 1906-1913.
Goffeau A, Slayman C W. 1981. The proton-translocating ATPase of the fungal plasma membrane. BBA Reviews on Bioenergetics, 639, 197-223.
Goswami R S, Kistler HC. 2004. Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 5, 515-525.
Gu K X, Song X S, Xiao X M, Duan X X, Wang J X, Duan Y B, Hou Y P, Zhou M G. 2019. A β2-tubulin dsRNA detrived from Fusarium asiaticum confers plant resistance to multiple phytopathogens and reduces fungicide resistance. Pesticide Biochemistry Physiology, 153, 36-46.
Hammond S M, Bernstein E, Beach D, Hannon G J. 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404, 293-296.
Hammond S M, Boettcher S, Caudy A A, Kobayashi R, Hannon G J. 2001. Agronaute2, a link between genetic and biochemical analyses of RNAi. Science, 293, 1146-1150.
Heit S, Geurts M M G, Murphy B J, Corey R A, Mills D J, Kühlbrandt W, Bublitz M. 2021. Structure of the hexameric fungal plasma membrane proton pump in its autoinhibited state. Science Advances, 7, eabj5255.
Hou Z M, Xue C Y, Peng Y L, Katan T, Kistler H C, Xu J R. 2002. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Molecular Plant-Microbe Interaction, 15, 1119-1127.
Huang C Y, Wang H, Hu P, Hamby R, Jin H L. 2019. Small RNAs-big players in plant-microbe interactions. Cell Host and Microbe, 25, 7-9.
Kalyandurg P B, Sundararajan P, Dubey M, Ghadamgahi F, Zahid M A, Whisson S C, Vetukuri R R. 2021. Spary-induced gene silencing as potential tool to control potato late blight disease. Phytopathology, 111, 2168-2175.
Kjellerup L, Gordon S, Cohrt K O H, Brown W D, Fuglsang A T, Winther A M L. 2017. Identification of antifungal H+-ATPase inhibitors with effect on plasma membrane potential. Antimicrobial Agents and Chemotherapy, 61, e00032-17.
Kühlbrandt W. 2004. Biology, structure and mechanism of P-type ATPase. Nature Reviews Molecular Cell Biology, 5, 282-295.
Kühlbrandt W, Zeelen J, Dietrich J. 2002. Structure, mechanism, and regulation of the Neurospora plasma membrane H+-ATPase. Science, 297, 1692-1996.
Lee H J, Ryu D. 2017. Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: public health perspectives of their co-occurence. Journal of Agricultural Food and Chemistry, 65, 7034-7051.
Li B, Zheng Z T, Liu X M, Cai Y Q, Mao X W, Zhou M G. 2016. Genotypes and characteristics of phenamacril-resistant mutants in Fusarium asiaticum. Plant Disease, 100, 1754-1761.
Li H K, Diao Y M, Wang J X, Chen C J, Ni J P, Zhou M G. 2008. JS399-19, a new fungicide against wheat scab. Crop Protection, 27, 90-95.
Li T, Xu J K, Gao H, Cao Z G, Wang J X, Cai Y Q, Duan Y B, Zhou M G. 2022. The G143A/S substitution of mitochondrially encoded cytochrome b (Cytb) in Magnaporthe oryzae confers resistance to quinone outside inhibitors. Pest Management Science, 78, 4850-4858.
Lii S. 2012. Mycotoxins in crops-a threat to human and domestic animal health. Plant Health Instructor, http://doi:10.1094/PHI-I-2009-0715-01.
Liu Z ., Wu S S, Chen Y, Han X Y, Gu Q, Yin Y N, Ma Z H. 2017. The microtubule end-binding protein FgEB1 regulates polar growth and fungicide sensitivity via different interactors in Fusarum graminearum. Environmental Microbiology, 19, 1791-1807.
Malínská K, Malínský J, Opekarová M, Tanner W. 2003. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Molecular Biology of the Cell, 14, 4427-4436.
Mao X W, Wu Z W, Chen F R, Zhou M G, Hou Y P. 2022. FfCOX17 is involved in fumonisins production, growth, asexual reproduction, and fungicide sensitivity on Fusarium fujikuroi. Toxin, 14, 14070427.
Nakayashiki H, Hanada S, Nguyen B Q, Kadotani N, Tosa Y, Mayama S. 2005. RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genetic Biology, 42, 275-283.
Nightingale M J, Marchylo B A, Clear R M, Dexter J E, Preston K R. 1999. Fusarium head blight: Effect of fungal proteases on wheat storage proteins. Cereal Chemistry, 76, 150-158.
Nowara D, Gray A, Lacomme L, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P. 2010. HIGS: Host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell, 22, 3130-3141.
Palmgren M, Morsomme P. 2019. The plasma membrane H+-ATPase, a simple polypeptide with a long history. Yeast, 36, 201-210.
Remy E, Meyer M, Blaise F, Chabirand M, Wolff N, Balesdent M H, Rouxel T. 2008. The Lmpma1 gene of Leptosphaeria maculans encodes a plasma membrane H+-ATPase isoform essential for pathogenicity towards oilseed rape. Fungal Genetic Biology, 45, 1122-11334.
Sarkar A, Roy-Barman S. 2021. Spray-inducing silencing of pathogenicity gene MoDES1 via exogenous double-stranded RNA can confer partial resistance against fungal blast in rice. Frontiers in Plant Science, 12, 733129.
Serrano R. 1989. Structure and function of plasma membrane ATPase. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 61-94.
Serrano R, Kielland-Brandt M C, Flink G R. 1986. Yeast plasma membrane ATPase is essential for growth and has homology with (Na++K+), K+-and Ca2+-ATPases. Nature, 319, 689-693.
Sobrova P, Adam V, Vasatkova A, Beklova M, Zeman L, Kizek R. 2010. Deoxynivalenol and its toxicity. Toxicology, 3, 94-99.
Song X S, Gu K X, Duan X X, Xiao X M, Hou Y P, Duan Y B, Wang J X, Zhou M G. 2018a. A myosin-5 dsRNA that reduces the fungicide resistance and pathogenicity of Fusarium graminearum. Pesticide Biochemistry Physiology, 150, 1-9.
Song X S, Gu K X, Duan X X, Xiao X M, Hou Y P, Duan Y B, Wang J X, Zhou M G. 2018b. Secondary amplification of siRNA machinery limits the application of spray-induced gene silencing. Molecular Plant Pathology, 19, 2543-2560.
Soteropoulos P, Vaz T, Santangelo R, Paderu P, Huang D Y, Tamás M J, Perlin D S. 2000. Molecular Characterization of the plasma membrane H+-ATPase, an antifungal target in Cryptococcus neoformans. Antimicrobial Agents and Chemotherapy. 44, 2349-2355.
Spolti P, Ponte E M D, Dong Y H, Cummings J A, Bergstrom G C. 2014. Triazole sensitivity in a contemporary population of Fusarium graminearum from New York wheat and competitiveness of a tebuconazole-resistant isolate. Plant Disease, 98, 607-613.
Tang G F, Chen Y, Xu J R, Kistler H C, Ma Z H. 2018. The fungal myosin I is essential for Fusarium toxisome formation. PLoS Pathogens, 14, e1006827.
Tomari Y, Zamore P D. 2022. Perspective: machines for RNAi. Gene & Development, 19, 517-529.
Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal S I S, Moazed D. 2004, RNAi-mediated targeting of heterochromatin by the RITS complex. Science, 303, 672-676.
Wang M, Jin H L. 2017. Spray-induced gene silencing: a powerful innovative strategy for crop protection. Trends in Microbiolology, 25, 4-6.
Werner B T, Gaffar F Y, Schuemann J, Biedenkopf D, Koch A M. 2020. RNA-spray-mediated silencing of Fusarium graminearum AGO and DCL genes improve barley disease resistance. Frontiers in Plant Science, 11, 476.
Wolf E D D, Madden L V, Lipps P E. 2003, Risk assessment models for wheat Fusarium head blight epidemics based on within-season weather data. Phytopathology, 93, 428-435.
Wu L Y, Yuan Z L, Wang P W, Mao X W, Zhou M G, Hou Y P. 2022. The plasma membrane H+-ATPase FgPMA1 regulates the development, pathogenicity, and phenamacril sensitivity of Fusarium graminearum by interacting with FgMyo-5 and FgBmh2. Molecular Plant Pathology, 23, 489-502.
Yang P, Yi S Y, Nian J N, Yuan Y S, He W L, Zhang J B, Liao Y C. 2021. Application of Double-strand RNAs targeting chitin synthase, glucan synthase, and protein kinase reduces Fusarium graminearum spreading in wheat. Frontiers in Microbiology, 12, 660976.
Yang Y, Li M X, Duan Y B, Li T, Shi Y Y, Zhao D L, Zhou Z Z, Xin W J, Wu J, Pan X Y, Li Y J, Zhu Y Y, Zhou M G. 2018. A new point mutation in β2-tubulin confers resistance to carbendazim in Fusarium asiatium. Pesticide Biochemistry Physiology, 145, 15-21.
Yin C Y, Hulbert S H. 2018. Host-induced gene silencing (HIGS) for elucidating Puccinia gene function in wheat. Methods in Molecular Biology, 1848, 139-150.
Yin J R, Hao C F, Niu G, Wang W, Wang G H, Xiang P, Xu J R, Zhang X. 2020. FgPal1 regulates morphogenesis and pathogenesis in Fusarium graminearum. Environmental Microbiology, 22, 5373-5386.
Zhang Y, Chen W C, Shao W Y, Wang J X, Lv C Y, Ma H, Chen C J. 2017. Molecular, biological and physiological characterizations of resistance to phenamacril in Fusarium graminearum. Plant Pathology, 66, 1404-1412.
Zhao P, Zhao C R, Chen D D, Yun C H, Li H L, Bai L. 2021. Structure and activation mechanism of the hexameric plasma membrane H+-ATPase. Nature Communications, 12, 6439.
Zheng H W, Li P P, Yu Z, Yuan Y P, Zheng Q J, Xie Q R, Li G P, Abubakar Y S, Zhou J, Wang Z H, Zheng W H. 2021. FgSpa2 recruits FgMsb3, a Rab8 GAP, to the polarisome to regulate polarized trafficking, growth and pathogenicity in Fusarium graminearum. New Phytologist, 229, 1665-1683.
Zheng Z T, Hou Y P, Cai Y Q, Zhang Y, Li Y J, Zhou M G. 2015. Whole-genome sequencing reveals that mutations in mysin-5 confer resistance to the fungicide phenamacril in Fusarium graminearum. Scientific Report, 5, 8248.
Zhou Y X, Zhou X E, Gong Y P, Zhu Y Y, Cao X M, Brunzelle J S, Xu H E, Zhou M G, Melcher K, Zhang F. 2020. Sturctural basis of Fusarium myosin I inhibition by phenamacril. PloS Pathogens, 16, e1008323.
Zhou Z H, Duan Y B, Zhou M G. 2020. Carbendazim-resistance associated beta(2)-tubulin substitutions increase deoxynivalenol biosynthesis by reducing the interaction between beta(2)-tubulin and IDH3 in Fusarium graminearum. Environmental Microbiology, 22, 598-614.
Zhu Y Y, Zhang Y S, He Z Z, Duan Y B, Li Y J, Wang J X, Zhou M G. 2020. Detrimental effects of multiple mutations in position 240 of Fusarium gramineatum β2-Tublin. Phytopathology, 110, 1522-1529.
|