Journal of Integrative Agriculture ›› 2024, Vol. 23 ›› Issue (2): 711-723.DOI: 10.1016/j.jia.2023.05.032

• • 上一篇    下一篇

用于诊断水稻幼穗分化期营养水平的混合CNN-LSTM模型

  

  • 收稿日期:2023-02-09 接受日期:2023-04-27 出版日期:2024-02-20 发布日期:2024-01-30

A hybrid CNN-LSTM model for diagnosing rice nutrient levels at the rice panicle initiation stage

Fubing Liao1, Xiangqian Feng2, 3, Ziqiu Li1, Danying Wang2, Chunmei Xu2, Guang Chu2, Hengyu Ma2, Qing Yao1, Song Chen2#   

  1. 1 School of Computer Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China

    2 China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China

    3 School of Agriculture, Yangtze University, Jingzhou 434025, China

  • Received:2023-02-09 Accepted:2023-04-27 Online:2024-02-20 Published:2024-01-30
  • About author:Fubing Liao, E-mail: lfb2732@163.com; #Correspondence Song Chen, Tel: +86-571-63370276, E-mail: chengsong02@caas.cn
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2022YFD2300700), the Open Project Program of State Key Laboratory of Rice Biology, China National Rice Research Institute  (20210403) and the Zhejiang “Ten Thousand Talents” Plan Science and Technology Innovation Leading Talent Project, China (2020R52035).

摘要:

氮(N)和钾(K是水稻生长过程中两种关键的矿质营养元素。准确诊断氮、钾的状况,对水稻在特定生长阶段的合理施肥具有重要意义。因此,我们提出了一种用于在幼穗分化期(EPIS)诊断水稻营养水平的混合模型,它将嵌入注意力机制的卷积神经网络和长短期记忆网络(LSTM)相结合。在为期两年的实验中,该模型在无人机从不同生长阶段的水稻冠层收集的大量序列图像上得到了验证。与 VGG16AlexNetGoogleNetDenseNet inceptionV3 相比,ResNet101 结合 LSTM的模型在黄花占(HHZ,一种籼稻品种)数据集上获得了 83.81% 的最高平均准确率。当在 2021 年的 HHZ 和秀水 134XS134,一种粳稻品种)数据集上进行测试时,使用 Squeeze-and-Excitation (SE) 增强的 ResNet101-LSTM 模型达到了 85.38% 88.38% 的最高准确率,并且通过跨数据集方法,该模型在2022年测试的HHZXS134数据集上的平均准确率分别为81.25%82.50%,表现出良好的泛化能力。我们提出的模型涉及水稻不同生育阶段的动态信息,可以有效地诊断在EPIS 中水稻不同的营养状况,有助于在水稻穗萌发阶段做出合理施肥的实际决策。

Abstract:

Nitrogen (N) and potassium (K) are two key mineral nutrient elements involved in rice growth.  Accurate diagnosis of N and K status is very important for the rational application of fertilizers at a specific rice growth stage.  Therefore, we propose a hybrid model for diagnosing rice nutrient levels at the early panicle initiation stage (EPIS), which combines a convolutional neural network (CNN) with an attention mechanism and a long short-term memory network (LSTM).  The model was validated on a large set of sequential images collected by an unmanned aerial vehicle (UAV) from rice canopies at different growth stages during a two-year experiment.  Compared with VGG16, AlexNet, GoogleNet, DenseNet, and inceptionV3, ResNet101 combined with LSTM obtained the highest average accuracy of 83.81% on the dataset of Huanghuazhan (HHZ, an indica cultivar).  When tested on the datasets of HHZ and Xiushui 134 (XS134, a japonica rice variety) in 2021, the ResNet101-LSTM model enhanced with the squeeze-and-excitation (SE) block achieved the highest accuracies of 85.38 and 88.38%, respectively.  Through the cross-dataset method, the average accuracies on the HHZ and XS134 datasets tested in 2022 were 81.25 and 82.50%, respectively, showing a good generalization.  Our proposed model works with the dynamic information of different rice growth stages and can efficiently diagnose different rice nutrient status levels at EPIS, which are helpful for making practical decisions regarding rational fertilization treatments at the panicle initiation stage.

Key words: dynamic model of deep learning ,  UAV ,  rice panicle initiation ,  nutrient level diagnosis ,  image classification