Journal of Integrative Agriculture ›› 2023, Vol. 22 ›› Issue (7): 2248-2270.DOI: 10.1016/j.jia.2023.02.022
收稿日期:
2022-09-08
接受日期:
2022-11-20
出版日期:
2023-07-20
发布日期:
2022-11-20
LIAO Zhen-qi1, DAI Yu-long1, WANG Han1, Quirine M. KETTERINGS2, LU Jun-sheng1, ZHANG Fu-cang1, LI Zhi-jun1, FAN Jun-liang1#
1 Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of the Ministry of Education, Northwest A&F University, Yangling 712100, P.R.China
2 Department of Animal Science, Cornell University, Ithaca, NY 14853, USA
Received:
2022-09-08
Accepted:
2022-11-20
Online:
2023-07-20
Published:
2022-11-20
About author:
LIAO Zhen-qi, E-mail: nwafulzq@126.com; #Correspondence
FAN Jun-liang, E-mail: nwwfjl@163.com
Supported by:
摘要:
准确、快速地估算作物冠层氮素含量(CNC)是精准农业中优化氮肥施用的关键。田间取样测定叶片面积指数(leaf area index,LAI)、冠层光合色素(CPP:包括叶绿素a、叶绿素b和类胡萝卜素)和叶片氮浓度(leaf nitrogen concentration,LNC)费时费力。本文评估了利用高精度无人机多光谱影像估算冬小麦全生育期LAI、CPP和CNC。选取23个光谱特征(5个原始光谱波段、17个植被指数和RGB图像的灰度值)和8个纹理特征(对比度、熵、方差、均值、同质性、相异性、二阶矩、相关性)作为模型的输入,比较了多元逐步回归(MSR)、支持向量回归(SVR)、梯度提升决策树(GBDT)、高斯过程回归(GPR)、反向传播神经网络(BPNN)和径向基函数神经网络(RBFNN)6种机器学习方法反演冬小麦LAI、CPP和CNC的效果。特别提出了一种基于LAI和CPP的双层结构模型来估算CNC。研究结果表明,与仅输入SFs相比,SFs + TFs组合输入大大提高了冬小麦LAI、CPP和CNC的估算精度。RBFNN和BPNN模型在估算冬小麦LAI、CPP和CNC方面优于其他机器学习模型。提出的双层模型(R2=0.67–0.89 , RMSE=13.63–23.71 mg g-1 , MAE = 10.75–7.59 mg g -1)在估算冬小麦CNC时优于传统的直接反演模型(R2=0.61–0.80 , RMSE=18.01–25.12 mg g-1 , MAE = 12.96–18.88 mg g -1)。以SFs + TFs作为输入的双层RBFNN模型在估算冬小麦CNC时精度最高( R2=0.89 , RMSE= 13.63 mg g-1 , MAE=10.75 mg g-1)。本研究可为田间准确、快速地估测冬小麦冠层氮素含量提供指导。
LIAO Zhen-qi, DAI Yu-long, WANG Han, Quirine M. KETTERINGS, LU Jun-sheng, ZHANG Fu-cang, LI Zhi-jun, FAN Jun-liang. 一种基于无人机多光谱影像改进小麦冠层氮素含量估算的双层模型[J]. Journal of Integrative Agriculture, 2023, 22(7): 2248-2270.
LIAO Zhen-qi, DAI Yu-long, WANG Han, Quirine M. KETTERINGS, LU Jun-sheng, ZHANG Fu-cang, LI Zhi-jun, FAN Jun-liang. A double-layer model for improving the estimation of wheat canopy nitrogen content from unmanned aerial vehicle multispectral imagery[J]. Journal of Integrative Agriculture, 2023, 22(7): 2248-2270.
Al-Ghzawi A L A, Khalaf Y B, Al-Ajlouni Z I, AL-Quraan N A, AL-Quraan I, Hani N B. 2018. The effect of supplemental irrigation on canopy temperature depression, chlorophyll content, and water use efficiency in three wheat (Triticum aestivum L. and T. durum Desf.) varieties grown in dry regions of Jordan. Agriculture, 8, 67. Ali A M. 2020. Using hand-held chlorophyll meters and canopy reflectance sensors for fertilizer nitrogen management in cereals in small farms in developing countries. Sensors, 20, 1127. Atzberger C, Guérif M, Baret F, Werner W. 2010. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Computers and Electronics in Agriculture, 73, 165–173. Barnes E M, Clarke T R, Richards S E, Colaizzi P D, Haberland J, Kostrzewski M, Waller P, Choi C, Riley E, Thompson T, Lascano R J, Li H, Moran M S. 2000. Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In: Proceedings of the Fifth International Conference on Precision Agriculture.Bloomington, MN, USA. Precision Agriculture Center, University of Minnesota, Madison, WI. Bausch W C, Duke H R. 1996. Remote sensing of plant nitrogen status in corn. Transactions of the ASAE, 39, 1869–1875. Broge N H, Leblanc E. 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156–172. Camps-Valls G, Verrelst J, Munoz-Mari J, Laparra V, Mateo-Jimenez F, Gomez-Dans J. 2016. A survey on Gaussian processes for earth-observation data analysis: A comprehensive investigation. IEEE Geoscience and Remote Sensing Magazine, 4, 58–78. Cen H Y, Wan L, Zhu J P, Li Y J, Li X R, Zhu Y M, Weng H Y, Wu W K, Yin W X, Xu C, Bao Y D, Feng L, Shou J S, He Y. 2019. Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight UAV with dual image-frame snapshot cameras. Plant Methods, 15, 32. Chakhvashvili E, Siegmann B, Muller O, Verrelst J, Bendig J, Kraska T, Rascher U. 2022. Retrieval of crop variables from proximal multispectral UAV image data using PROSAIL in maize canopy. Remote Sensing, 14, 1247. Chen J M. 1996. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22, 229–242. Chou S, Chen B, Chen J, Wang M M, Wang S Q, Croft H, Shi Q. 2020. Estimation of leaf photosynthetic capacity from the photochemical reflectance index and leaf pigments. Ecological Indicators, 110, 105867. Clevers J G P W, Gitelson A A. 2013. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3. International Journal of Applied Earth Observation and Geoinformation, 23, 344–351. Cui B, Zhao Q J, Huang W J, Song X Y, Ye H C, Zhou X F. 2019. A new integrated vegetation index for the estimation of winter wheat leaf chlorophyll content. Remote Sensing, 11, 974. Duan B, Liu Y, Gong Y, Peng Y, Wu X T, Zhu R S, Fang S H. 2019. Remote estimation of rice LAI based on Fourier spectrum texture from UAV image. Plant Methods, 15, 1–12. Fang H, Liu F L, Gu X B, Chen P P, Li Y P, Li Y N. 2022. The effect of source-sink on yield and water use of winter wheat under ridge-furrow with film mulching and nitrogen fertilization. Agricultural Water Management, 267, 107616. Feng W, Guo B B, Wang Z J, He L, Song X, Wang Y H, Guo T C. 2014. Measuring leaf nitrogen concentration in winter wheat using double-peak spectral reflection remote sensing data. Field Crops Research, 159, 43–52. Frels K, Guttieri M, Joyce B, Leavittc B, Baenzigera S. 2018. Evaluating canopy spectral reflectance vegetation indices to estimate nitrogen use traits in hard winter wheat. Field Crops Research, 217, 82–92. Fu W, Fan J, Hao M D, Hu J S, Wang H. 2021. Evaluating the effects of plastic film mulching patterns on cultivation of winter wheat in a dryland cropping system on the Loess Plateau, China. Agricultural Water Management, 244, 106550. Fu Y Y, Yang G J, Li Z H, Song X Y, Li Z H, Xu X G, Wang P, Zhao C J. 2020. Winter wheat nitrogen status estimation using UAV-based RGB imagery and gaussian processes regression. Remote Sensing, 12, 3778. Geipel J, Link J, Wirwahn J A, Claupein W. 2016. A programmable aerial multispectral camera system for in-season crop biomass and nitrogen content estimation. Agriculture, 6, 4. Gitelson A A, Kaufman Y J, Merzlyak M N. 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298. Gitelson A A, Peng Y, Arkebauer T J, Schepers J. 2014. Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: Implications for remote sensing of primary production. Remote Sensing of Environment, 144, 65–72. Gu X, Cai H, Chen P, Li Y P, Fang H, Li Y N. 2021. Ridge-furrow film mulching improves water and nitrogen use efficiencies under reduced irrigation and nitrogen applications in wheat field. Field Crops Research, 270, 108214. Haboudane D, Miller J R, Pattey E, Zarco-Tejada P, Strachane I B. 2004. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90, 337–352. Haboudane D, Miller J R, Tremblay N, Zarco-Tejada P J, Dextraze L. 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81, 416–426. He H, Yan Y, Chen T, Cheng P G. 2019. Tree height estimation of forest plantation in mountainous terrain from bare-earth points using a DoG-coupled radial basis function neural network. Remote Sensing, 11, 1271. Hlatshwayo S T, Mutanga O, Lottering R T, Kiala Z, Ismail R. 2019. Mapping forest aboveground biomass in the reforested Buffelsdraai landfill site using texture combinations computed from SPOT-6 pan-sharpened imagery. International Journal of Applied Earth Observation and Geoinformation, 74, 65–77. Hosgood B, Jacquemoud S, Verdebout J, Andreoli G, Pedrini G, Schmuck G. 1995. Leaf Optical Properties Experiment 93 (LOPEX93). European Commission, Ispra, Italy. Huete A, Didan K, Miura T, Rodriguez E P, Gao X, Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213. Jin X, Yang G, Xu X, Yang H, Feng H K, Li Z H, Shen J X, Lan Y B, Zhao C J. 2015. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sensing, 7, 13251–13272. Kanan C, Cottrell G W. 2012. Color-to-grayscale: does the method matter in image recognition? PLoS ONE, 7, e29740. Kopačková-Strnadová V, Koucká L, Jelének J, Lhotáková Z, Oulehle F. 2021. Canopy top, height and photosynthetic pigment estimation using parrot sequoia multispectral imagery and the unmanned aerial vehicle (UAV). Remote Sensing, 13, 705. Kwak G H, Park N W. 2019. Impact of texture information on crop classification with machine learning and UAV images. Applied Sciences, 9, 643. Lee H, Wang J, Leblon B. 2020. Using linear regression, Random Forests, and Support Vector Machine with unmanned aerial vehicle multispectral images to predict canopy nitrogen weight in corn. Remote Sensing, 12, 2071. Li Z, Li Z, Fairbairn D, Li N, Xu B, Feng H K, Yang G J. 2019a. Multi-LUTs method for canopy nitrogen density estimation in winter wheat by field and UAV hyperspectral. Computers and Electronics in Agriculture, 162, 174–182. Li Z, Jing Y, Huang P, Dong X H, Wang X, Wei L, Liu Z Y. 2019b. Verification of single red-edge chlorophyll index using multi-spectral image. Southwest China Journal of Agricultural Sciences, 32, 2796–2801. (in Chinese) Liao Z Q, Zeng H L, Fan J L, Lai Z L, Zhang C, Zhang F C, Wang H D, Cheng M H, Guo J J, Li Z J, Wu P. 2022a. Effects of plant density, nitrogen rate and supplemental irrigation on photosynthesis, root growth, seed yield and water-nitrogen use efficiency of soybean under ridge-furrow plastic mulching. Agricultural Water Management, 268, 107688. Liao Z Q, Zhang K B, Fan J L, Li Z J, Zhang F C, Wang X K, Wang H D, Cheng M H, Zou Y F. 2022b. Ridge-furrow plastic mulching and dense planting with reduced nitrogen improve soil hydrothermal conditions, rainfed soybean yield and economic return in a semi-humid drought-prone region of China. Soil and Tillage Research, 217, 105291. Liao Z Q, Zheng J, Fan J L, Pei S Z, Dai Y L, Zhang F C, Li Z J. 2023. Novel models for simulating maize growth based on thermal time and photothermal units: Applications under various mulching practices. Journal of Integrative Agriculture, 22, 1381–1395. Liang L, Di L P, Zhang L P, Deng M X, Qin Z H, Zhao S H, Lin H. 2015. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sensing of Environment, 165, 123–134. Liu S S, Li L T, Gao W H, Zhang Y K, Liu Y N, Wang S Q, Lu J W. 2018. Diagnosis of nitrogen status in winter oilseed rape (Brassica napus L.) using in-situ hyperspectral data and unmanned aerial vehicle (UAV) multispectral images. Computers and Electronics in Agriculture, 151, 185–195. Liu Z, Guo P, Liu H, Fan P, Zeng P Z, Liu X Y, Feng C, Wang W, Yang F Z. 2021. Gradient boosting estimation of the leaf area index of apple orchards in UAV remote sensing. Remote Sensing, 13, 3263. Lou P Q, Fu B L, He H C, Chen J J, Wu T H, Lin X C, Liu L L, Fan D L, Deng T F. 2021. An effective method for canopy chlorophyll content estimation of marsh vegetation based on multiscale remote sensing data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 53115–5325. Louhaichi M, Borman M M, Johnson D E. 2001. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, 16, 65–70. Luo P, Liao J, Shen G. 2020. Combining spectral and texture features for estimating leaf area index and biomass of maize using Sentinel-1/2, and Landsat-8 data. IEEE Access, 8, 53614–53626. Ma Q, Wang M, Zheng G, Yao Y, Tao T T, Zhu M, Ding J F, Li C Y, Guo W S, Zhu X K. 2021. Twice-split application of controlled-release nitrogen fertilizer met the nitrogen demand of winter wheat. Field Crops Research, 267, 108163. Maimaitijiang M, Ghulam A, Sidike P, Hartling S, Maimaitiyiming M, Peterson K, Shavers K, Fishman J, Peterson J, Kadam S, Burken J, Fritsch F. 2017. Unmanned aerial system (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS Journal of Photogrammetry and Remote Sensing, 134, 43–58. Padilla F M, Gallardo M, Peña-Fleitas M T, De Souza R, Thompson R B. 2018. Proximal optical sensors for nitrogen management of vegetable crops: A review. Sensors, 18, 2083. Palka M, Manschadi A M, Koppensteiner L, Neubauer T, Fitzgerald G J. 2021. Evaluating the performance of the CCCI-CNI index for estimating N status of winter wheat. European Journal of Agronomy, 130, 126346. Pearson R L, Miller L D. 1972. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. Remote Sensing of Environment, VIII, 1355. Peng J F, Feng Y H, Wang X K, Jie L, Xu G L, Phonenasay S, Luo Q X, Han Z L, Lu W. 2021. Effects of nitrogen application rate on the photosynthetic pigment, leaf fluorescence characteristics, and yield of indica hybrid rice and their interrelations. Scientific Reports, 11, 1–10. Peñuelas J, Gamon J A, Fredeen A L, Field C B. 1994. Reflectance indices associated with physiological changes in nitrogen-and water-limited sunflower leaves. Remote Sensing of Environment, 48, 135–146. Pu R, Cheng J. 2015. Mapping forest leaf area index using reflectance and textural information derived from WorldView-2 imagery in a mixed natural forest area in Florida, US. International Journal of Applied Earth Observation and Geoinformation, 42, 11–23. Qiu Z, Ma F, Li Z, Xu X B, Ge H X, Du C W. 2021. Estimation of nitrogen nutrition index in rice from UAV RGB images coupled with machine learning algorithms. Computers and Electronics in Agriculture, 189, 106421. Revill A, Myrgiotis V, Florence A, Hoad S, Rees R, MacArthur A, Williams M. 2021. Combining process modelling and LAI observations to diagnose winter wheat nitrogen status and forecast yield. Agronomy, 11, 314. Richardson A J, Wiegand C L. 1977. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43, 1541–1552. Rivera J P, Verrelst J, Leoneko G, Moreno J. 2013. Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL model. Remote Sensing, 5, 3280–3304. Rondeaux G, Steven M, Baret F. 1996. Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95–107. Rouse J W, Haas J R H, Schell J A, Freden D W. 1974. Monitoring vegetation systemsin the Great Plains with ERTS. In: Proceedings of the 3rd ERTS Symposium.Washington, D.C., USA. National Aeronautics and Space Administration, USA. Schlerf M, Atzberger C, Hill J, Buddenbaum H, Werner W, Schüler G. 2010. Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 12, 17–26. Shafiee S, Lied L M, Burud I, Jon A D, Alsheikh M, Lillemo M. 2021. Sequential forward selection and support vector regression in comparison to LASSO regression for spring wheat yield prediction based on UAV imagery. Computers and Electronics in Agriculture, 183, 106036. Shi R, Zhang Y, Chen X. 2010. Influence of long-term nitrogen fertilization on micronutrient density in grain of winter wheat (Triticum aestivum L.). Journal of Cereal Science, 51, 165–170. Sigua G C, Stone K C, Bauer P J, Szogi A A. 2018. Biomass and nitrogen use efficiency of grain sorghum with nitrogen and supplemental irrigation. Agronomy Journal, 110, 1119–1127. Song Y, Wang J, Shang J, Liao C H. 2020. Using UAV-based SOPC derived LAI and SAFY model for biomass and yield estimation of winter wheat. Remote Sensing, 12, 2378. Taylor K E. 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research (Atmospheres), 106, 7183–7192. Verrelst J, Alonso L, Camps-Valls G, Delegido J, Moreno J. 2011, Retrieval of vegetation biophysical parameters using gaussian process techniques. IEEE Transactions on Geoscience and Remote Sensing, 50, 1832–1843. Verrelst J, Rivera J P, Leoneko G, Alonso L, Moreno J. 2014. Optimizing LUT-based RTM inversion for semiautomatic mapping of crop biophysical parameters from Sentinel-2 and -3 data: Role of cost functions. IEEE Transactions on Geoscience and Remote Sensing, 52, 257–269. Verrelst J, Romijn E, Kooistra L. 2012. Mapping vegetation structure in a heterogeneous river floodplain ecosystem using pointable CHRIS/PROBA data. Remote Sensing, 4, 2866–2889, Wang X X, Lu X P, Yang Z N, Gao Z, Wang L, Zhang B W. 2022. A Method for retrieving leaf area index of winter wheat by combining PROSAIL model with VMG model. Transactions of the Chinese Society for Agricultural Machinery, 53, 209–206. (in Chinese) Woo D K, Riley W J, Wu Y. 2020. More fertilizer and impoverished roots required for improving wheat yields and profits under climate change. Field Crops Research, 249, 107756. Wu S, Yang P, Ren J, Chen Z X, Liu C G, Li H. 2020. Winter wheat LAI inversion considering morphological characteristics at different growth stages coupled with microwave scattering model and canopy simulation model. Remote Sensing of Environment, 240, 111681. Wulder M A, LeDrew E F, Franklin S E, Lavigne M. 1998. Aerial image texture information in the estimation of northern deciduous and mixed wood forest leaf area index (LAI). Remote Sensing of Environment, 64, 64–76. Xiong X, Chang L, Khalid M, Zhang J J, Huang D F. 2018. Alleviation of drought stress by nitrogen application in Brassica campestris ssp. Chinensis L. Agronomy, 8, 66. Yan S C, Wu Y, Fan J L, Zhang F C, Guo J J, Zheng J, Wu L F. 2022. Quantifying grain yield, protein, nutrient uptake and utilization of winter wheat under various drip fertigation regimes. Agricultural Water Management, 261, 107380. Yang B H, Wang M X, Sha Z X, Wang B, Chen J J, Yao X, Cheng T, Cao W X, Zhu Y. 2019. Evaluation of aboveground nitrogen content of winter wheat using digital imagery of unmanned aerial vehicles. Sensors, 19, 4416. Yang G J, Liu J G, Zhao C J, Li Z H, Huang Y B, Yu H Y, Xu B, Yang X B, Zhu D M, Zhang X Y, Zhang R Y, Feng H K, Zhao X Q, Li Z H, Li H L, Yang H. 2017. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Frontiers in Plant Science, 8, 1111. Yao X, Wang N, Liu Y, Cheng T, Tian Y T, Chen Q, Zhu Y. 2017. Estimation of wheat LAI at middle to high levels using unmanned aerial vehicle narrowband multispectral imagery. Remote Sensing, 9, 1304. Yue J B, Yang G J, Tian Q J, Feng H K, Xu K J, Zhou C Q. 2019. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. ISPRS Journal of Photogrammetry and Remote Sensing, 150, 226–244. Zha H N, Miao Y X, Wang T T, Li Y, Zhang J, Sun W C, Feng Z Q, Kusnierek K. 2020. Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning. Remote Sensing, 12, 215. Zhai L, Wan L, Sun D, Abdalla A, Zhu Y M, Li X R, He Y, Cen H Y. 2021. Stability evaluation of the PROSPECT model for leaf chlorophyll content retrieval. International Journal of Agricultural and Biological Engineering, 14, 189–198. Zhang J, Gao D, Song D, Qiao L, Sun H, Li Z M, Li L. 2022. Wavelengths optimization and chlorophyll content detection based on ROSPECT model. Spectroscopy and Spectral Analysis, 42, 1514–1521. (in Chinese) Zhang J Y, Qiu X L, Wu Y T, Zhu Y, Cao Q, Liu X J, Cao W X. 2021. Combining texture, color, and vegetation indices from fixed-wing UAS ssimagery to estimate wheat growth parameters using multivariate regression methods. Computers and Electronics in Agriculture, 185, 106138. Zhang X, Zhang K, Sun Y, Zhang K F, Sun Y Q, Zhao Y D, Zhuang H F, Ban W, Chen Y, Fu E J, Chen S, Liu J X, Hao Y M. 2022. Combining spectral and texture features of UAS-based multispectral images for maize leaf area index estimation. Remote Sensing, 14, 331. Zheng H, Li W, Jiang J, Liu Y, Cheng T, Tian Y C, Zhu Y, Cao W X, Zhang Y, Yao X. 2018. A comparative assessment of different modeling algorithms for estimating leaf nitrogen content in winter wheat using multispectral images from an unmanned aerial vehicle. Remote Sensing, 10, 2026. Zhou Y C, Lao C C, Yang Y L, Zhang Z T, Chen H Y, Chen Y W, Chen J Y, Ning J F, Yang N. 2021. Diagnosis of winter-wheat water stress based on UAV-borne multispectral image texture and vegetation indices. Agricultural Water Management, 256, 107076. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||