Barbeta B L, Marshall A T, Gillon A D, Craiks D J, Anderson M A. 2008. Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae. Proceedings of the National Academy of Sciences of the United States of America, 105, 1221–1225.
Broderick N A, Raffa K F, Handelsman J. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proceedings of the National Academy of Sciences of the United States of America, 103, 15196–15199.
Byrne M J, Iadanza M G, Perez M A, Maskell D P, George R M, Hesketh E L, Beales P A, Zack M D, Berry C, Thompson R F. 2021. Cryo-EM structures of an insecticidal Bt toxin reveal its mechanism of action on the membrane. Nature Communications, 12, 2791.
Caccia S, Di Lelio I, La Storia A, Marinelli A, Varricchio P, Franzetti E, Banyuls N, Tettamanti G, Casartelli M, Giordana B, Ferre J, Gigliotti S, Ercolini D, Pennacchio F. 2016. Midgut microbiota and host immunocompetence underlie Bacillus thuringiensis killing mechanism. Proceedings of the National Academy of Sciences of the United States of America, 113, 9486–9491.
Casida J E. 2009. Pest toxicology: The primary mechanisms of pesticide action. Chemical Research in Toxicology, 22, 609–619.
Chen C, Chen H Y, Huang S J, Jiang T S, Wang C H, Tao Z, He C, Tang Q F, Li P J. 2021. Volatile DMNT directly protects plants against Plutella xylostella by disrupting the peritrophic matrix barrier in insect midgut. eLife, 10, e63938.
Chen W B, Liu C X, Lu G Q, Chen H M, She Z C, Wu K M. 2018. Effects of Vip3AcAa+Cry1Ac cotton on midgut tissue in Helicoverpa armigera (Lepidoptera: Noctuidae). Journal of Insect Science, 18, 1–6.
Cheung K P, Roe R M, Hammock B D, Judson C L, Montague M A. 1985. The apparent in vivo neuromuscular effects of the δ-endotoxin of Bacillus thuringiensis var. israelensis in mice and insects of four orders. Pesticide Biochemistry and Physiology, 23, 85–94.
Daquila B V, Scudeler E L, Dossi F C A, Moreira D R, Pamphile J A, Conte H. 2019. Action of Bacillus thuringiensis (Bacillales: Bacillaceae) in the midgut of the sugarcane borer Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae). Ecotoxicology and Environmental Safety, 184, 109642.
Deng J C, Gao Y C, Zhu Z, Xu L, Li Z D, Tang R Y. 2019. Sulfite-promoted synthesis of N‑difluoromethylthioureas via the reaction of azoles with bromodifluoroacetate and elemental sulfur. Organic Letters, 21, 545–548.
Dhillon G S, Brar S K, Kau S, Verma M. 2012. Green approach for nanoparticle biosynthesis by fungi: Current trends and applications. Critical Reviews in Biotechnology, 32, 49–73.
Ellis D R, Salt D E. 2003. Plants, selenium and human health. Current Opinion in Plant Biology, 6, 273–279.
Espallholz J E, Hoffman D J. 2002. Selenium toxicity: Cause and effects in aquatic birds. Aquatic Toxicology, 57, 27–37.
Freeman J L, Lindblom S D, Quinn C F, Fakra S, Marcus M A, Pilon-Smits E A H. 2007. Selenium accumulation protects plants from herbivory by Orthoptera via toxicity and deterrence. New Phytologist, 175, 490–500.
Freeman J L, Quinn C F, Marcus M A, Fakra S, Pilon-Smits E A H. 2006. Selenium-tolerant diamondback moth disarms hyperaccumulator plant defense. Current Biology, 16, 2181–2192.
Furlong M J, Wright D J, Dosdall L M. 2013. Diamondback moth ecology and management: Problems, progress, and prospects. Annual Review of Entomology, 58, 517–541.
Han G J, Li C M, Liu Q, Xu J. 2015. Synergistic effect of combining Plutella xylostella granulovirus and Bacillus thuringiensis at sublethal dosages on controlling of diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology, 108, 2184–2191.
Hanson B R, Lindblom S D, Miriam L L, Pilon-Smits E A H. 2004. Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytologist, 162, 655–662.
Hogan G R, Razniak H G. 1991. Selenium-induced mortality and tissue distribution studies in Tenebrio molitor (Coleoptera: Tenebrionidae). Environmental Entomology, 20, 790–794.
Jiang X Y, Yang S, Yan Y, Lin F, Zhang L, Zhao W J, Zhao C, Xu H H. 2020. Design, synthesis, and insecticidal activity of 5,5-disubstituted 4,5-dihydropyrazolo(1,5-a)quinazolines as novel antagonists of GABA receptors. Journal of Agricultural and Food Chemistry, 68, 15005–15014.
Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R. 1999. Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Applied and Environmental Microbiology, 65, 4734–4740.
Kora A J, Rastogi L. 2016. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite. Journal of Environmental Management, 181, 231–236.
Li Z Y, Feng X, Liu S S, You M S, Furlong M J. 2016. Biology, ecology, and management of the diamondback moth in China. Annual Review of Entomology, 61, 277–296.
Ma C S, Zhang W, Peng Y, Zhao F, Rudolf V H W. 2021. Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nature Communications, 12, 5351.
Mason C J, Ray S, Shikano I, Peiffer M, Jones A G, Luthe D S, Hoover K, Felton G W. 2019. Plant defenses interact with insect enteric bacteria by initiating a leaky gut syndrome. Proceedings of the National Academy of Sciences of the United States of America, 116, 15991–15996.
Mechora S. 2019. Selenium as a protective agent against pests: A review. Plants (Basel), 8, 262.
Mithofer A, Boland W. 2012. Plant defense against herbivores: chemical aspects. Annual Review of Plant Biology, 63, 431–450.
Mohan S, Ma P W K, Pechan T, Bassford E R, Williams W P, Luthe D S. 2006. Degradation of the S. frugiperda peritrophic matrix by an inducible maize cysteine protease. Journal of Insect Physiology, 52, 21–28.
Napoleao T H, Albuquerque L P, Santos N D L, Nova I C V, Lima T A, Paiva P M G, Pontual E V. 2019. Insect midgut structures and molecules as targets of plant-derived protease inhibitors and lectins. Pest Management Science, 75, 1212–1222.
Pechan T, Cohen A, Williams W P, Luthe D S. 2002. Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proceedings of the National Academy of Sciences of the United States of America, 99, 13319–13323.
Percy J, Fast P G. 1983. Bacillus thuringiensis crystal toxin: Ultrastructural studies of iits effect on silkworm midgut cells. Journal of Invertebrate Pathology, 41, 86–98.
Qi Z J, Xue X P, Wu W J, Zhang J W, Yang R Y. 2006. Preparation of monoclonal antibody against celangulin V and immunolocalization of receptor in the oriental armyworm, Mythimna separata walker (Lepidoptera: Noctuidae). Journal of Agricultural and Food Chemistry, 54, 7600–7605.
Quinn C F, Galeas M L, Freeman J L, Pilon-Smits E A H. 2007. Selenium: Deterrence, toxicity, and adaptation. Integrated Environmental Assessment and Management, 3, 460–462.
Ryan C A. 1990. Protease inhibitors in plants: Genes for improving defenses against insects and pathogens. Annual Review of Phytopathology, 28, 425–449.
Schiavon M, Pilon-Smits E A H. 2017. The fascinating facets of plant selenium accumulation - biochemistry, physiology, evolution and ecology. New Phytologist, 213, 1582–1596.
Takahashi K, Suzuki N, Ogra Y. 2020. Effect of gut microflora on nutritional availability of selenium. Food Chemistry, 319, 126537.
Vadlamudi R K, Weber E, Ji I, Ji T H, Bulla L A. 1995. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. Journal of Biological Chemistry, 270, 5490–5494.
Wu L, Enberg A, Biggar J A. 1994. Effects of elevated selenium concenteation on selenium accumulation and nitrogen fixation symbiotic activity of Melilotus indica L. Ecotoxicology and Environmental Safety, 27, 50–63.
Xu Z F, Qi C C, Zhang M Y, Zhu J Y, Hu J, Feng K Y, Sun J Y, Wei P, Shen G M, Zhang P, He L. 2021. Selenium mediated host plant-mite conflict: Defense and adaptation. Pest Management Science, 77, 2981–2989.
Zhang L, Peng X M, Damu G L V, Geng R X, Zhou C H. 2014. Comprehensive review in current developments of imidazole-based medicinal chemistry. Medicinal Research Reviews, 34, 340–437.
|