van den Berg S, Vandenplas J, van Eeuwijk F A, Bouwman A C, Lopes M S, Veerkamp R F. 2019. Imputation to whole-genome sequence using multiple pig populations and its use in genome-wide association studies. Genetics Selection Evolution, 51, 1–13.
van Binsbergen R, Bink M C, Calus M P L, van Eeuwijk F A, Hayes B J, Hulsegge I, Veerkamp R F. 2014. Accuracy of imputation to whole-genome sequence data in Holstein Friesian cattle. Genetics Selection Evolution, 46, 41–53.
Bouwman A C, Veerkamp R F. 2014. Consequences of splitting whole-genome sequencing effort over multiple breeds on imputation accuracy. BMC Genetics, 15, 105–113.
Browning B L, Browning S R. 2016. Genotype imputation with millions of reference samples. American Journal of Human Genetics, 98, 116–126.
Browning S R. 2006. Multilocus Association mapping using variable-length markov chains. American Journal of Human Genetics, 78, 903–913.
Butty A M, Sargolzaei M, Miglior F, Stothard P, Schenkel F S, Gredler-Grandl B, Baes C F. 2019. Optimizing selection of the reference population for genotype imputation from array to sequence variants. Frontiers in Genetics, 10, 1–16.
Carvalheiro R, Boison S A, Neves H H R, Sargolzaei M, Schenkel F S, Utsunomiya Y T, O’Brien A M P, Sölkner J, McEwan J C, Van Tassell C P, Sonstegard T S, Garcia J F. 2014. Accuracy of genotype imputation in Nelore cattle. Genetics Selection Evolution, 46, 69–79.
Daetwyler H D, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brøndum R F, Liao X P, Djari A, Rodriguez S C, Grohs C, Esquerré D, Bouchez O, Rossignol M N, Klopp C, Rocha D, Fritz S, Eggen A, Bowman P J, Coote D, Chamberlain A J, et al. 2014. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nature Genetics, 46, 858–865.
Das S, Abecasis G R, Browning B L. 2018. Genotype imputation from large reference panels. Annual Review of Genomics and Human Genetics, 19, 73–96.
Das S, Forer L, Schönherr S, Sidore C, Locke A E, Kwong A, Vrieze S I, Chew E Y, Levy S, Mcgue M. 2016. Next-generation genotype imputation service and methods. Nature Genetics, 48, 1284–1287.
Hayes B J, Bowman P J, Daetwyler H D, Kijas J W, van der Werf J H. 2012. Accuracy of genotype imputation in sheepbreeds. Animal Genetics, 43, 72–80.
Hickey J M, Crossa J, Babu R, de los Campos G. 2012. Factors affecting the accuracy of genotype imputation in populations from several maize breeding programs. Crop Science, 52, 654–663.
Hickey J M, Kinghorn B P, Tier B, Wilson J F, Dunstan N, van der Werf J H J. 2011. A combined long-range phasing and long haplotype imputation method to impute phase for SNP genotypes. Genetics Selection Evolution, 43, 1–13.
Kojima K, Tadaka S, Katsuoka F, Tamiya G, Yamamoto M, Kinoshita K. 2019. A recurrent neural network based method for genotype imputation on phased genotype data. bioRxiv, 821504.
Larmer S G, Sargolzaei M, Schenkel F S. 2014. Extent of linkage disequilibrium, consistency of gametic phase, and imputation accuracy within and across Canadian dairy breeds. Journal of Dairy Science, 97, 3128–3141.
Li Y, Willer C, Sanna S, Abecasis G. 2009. Genotype imputation. Annual Review of Genomics and Human Genetics, 10, 387–406.
Li Y, Willer C J, Ding J, Scheet P, Abecasis G R. 2010. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genetic Epidemiology, 34, 816–834.
Liu E Y, Li M, Wang W, Li Y. 2013. MaCH-admix: Genotype imputation for admixed populations. Genetic Epidemiology, 37, 25–37.
Ma P, Brøndum R F, Zhang Q, Lund M S, Su G. 2013. Comparison of different methods for imputing genome-wide marker genotypes in Swedish and Finnish Red Cattle. Journal of Dairy Science, 96, 4666–4677.
Marchini J, Howie B, Myers S, McVean G, Donnelly P. 2007. A new multipoint method for genome-wide association studies by imputation of genotypes. Nature Genetics, 39, 906–913.
Naj A C. 2019. Genotype imputation in genome wide association studies. Current Protocols in Human Genetics, 102, 1–15.
Nicolazzi E L, Biffani S, Jansen G. 2013. Short communication: Imputing genotypes using PedImpute fast algorithm combining pedigree and population information. Journal of Dairy Science, 96, 2649–2653.
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M A R, Bender D, Maller J, Sklar P, de Bakker P I W, Daly M J, Sham P C. 2007. PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81, 559–575.
Ramnarine S, Zhang J, Chen L S, Culverhouse R, Duan W, Hancock D B, Hartz S M, Johnson E O, Olfson E, Schwantes-An T H, Saccone N L. 2015. When does choice of accuracy measure alter imputation accuracy assessments? PLoS ONE, 10, 1–18.
Roshyara N R, Scholz M. 2015. Impact of genetic similarity on imputation accuracy. BMC Genetics, 16, 90–105.
Sargolzaei M, Chesnais J P, Schenkel F S. 2014. A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 15, 478–489.
Sariya S, Lee J H, Mayeux R, Vardarajan B N, Reyes-Dumeyer D, Manly J J, Brickman A M, Lantigua R, Medrano M, Jimenez-Velazquez I Z, Tosto G. 2019. Rare variants imputation in admixed populations: Comparison across reference panels and bioinformatics tools. Frontiers in Genetics, 10, 1–10.
Scheet P, Stephens M. 2006. A fast and flexible statistical model for large-scale population genotype data: Applications to inferring missing genotypes and haplotypic phase. American Journal of Human Genetics, 78, 629–644.
Shin D, Won K H, Kim S H, Kim Y M. 2018. Extent of linkage disequilibrium and effective population size of Korean Yorkshire swine. Asian-Australasian Journal of Animal Sciences, 31, 1843–1851.
Shi S, Yuan N, Yang M, Du Z, Wang J, Sheng X, Wu J, Xiao J. 2018. Comprehensive assessment of genotype imputation performance. Human Heredity, 83, 107–116.
Song H, Ye S, Jiang Y, Zhang Z, Zhang Q, Ding X. 2019. Using imputation-based whole-genome sequencing data to improve the accuracy of genomic prediction for combined populations in pigs. Genetics Selection Evolution, 51, 1–13.
Tempelman R J. 2015. Statistical and computational challenges in whole genome prediction and genome-wide association analyses for plant and animal breeding. Journal of Agricultural, Biological, and Environmental Statistics, 20, 442–466.
Traspov A, Deng W, Kostyunina O, Ji J, Shatokhin K, Lugovoy S, Zinovieva N, Yang B, Huang L. 2016. Population structure and genome characterization of local pig breeds in Russia, Belorussia, Kazakhstan and Ukraine. Genetics Selection Evolution, 48, 16.
Uimari P, Tapio M. 2011. Extent of linkage disequilibrium and effective population size in Finnish Landrace and Finnish Yorkshire pig breeds. Journal of Animal Science, 89, 609–614.
Ullah E, Mall R, Abbas M M, Kunji K, Nato A Q, Bensmail H, Wijsman E M, Saad M. 2019. Comparison and assessment of family- and population-based genotype imputation methods in large pedigrees. Genome Research, 29, 125–134.
Vanraden P M, O’Connell J R, Wiggans G R, Weigel K A. 2011. Genomic evaluations with many more genotypes. Genetics Selection Evolution, 43, 10.
Ventura R V, Miller S P, Dodds K G, Auvray B, Lee M, Bixley M, Clarke S M, McEwan J C. 2016. Assessing accuracy of imputation using different SNP panel densities in a multi‑breed sheep population. Genetics Selection Evolution, 48, 71.
Welsh C S, Stewart T S, Schwab C, Blackburn H D. 2010. Pedigree analysis of 5 swine breeds in the United States and the implications for genetic conservation. Journal of Animal Science, 88, 1610–1618.
Ye S, Yuan X, Huang S, Zhang H, Chen Z, Li J, Zhang X, Zhang Z. 2019. Comparison of genotype imputation strategies using a combined reference panel for chicken population. Animal, 13, 1119–1126.
Ye S, Yuan X, Lin X, Gao N, Luo Y, Chen Z, Li J, Zhang X, Zhang Z. 2018. Imputation from SNP chip to sequence: A case study in a Chinese indigenous chicken population. Journal of Animal Science and Biotechnology, 9, 30–41.
|