Arbelaez P, Ponttuset J, Barron J, Marques F, Malik J. 2014. Multiscale combinatorial grouping. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Columbus, Ohio, USA. pp. 328–335.
Barbedo J G A. 2019. Plant disease identification from individual lesions and spots using deep learning. Biosystems Engineering, 180, 96–107.
Bebronne R, Carlier A, Meurs R, Leeemans V, Vermeulen P, Dumont B, Mercatoris B. 2020. In-field proximal sensing of septoria tritici blotch, stripe rust and brown rust in winter wheat by means of reflectance and textural features from multispectral imagery. Biosystems Engineering, 197, 257–269.
Bi Y, Guo W, Zhang G J, Liu S C, Chen Y. 2017. First report of colletotrichum truncatum causing anthracnose of strawberry in China. Plant Disease, 101, 832–832.
Chollet F. 2017. Xception: Deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Honolulu, Hawaii, USA. pp. 1800–1807.
Garhwal A S, Pullanagari R R, Li M, Reis M M, Archer R. 2020. Hyperspectral imaging for identification of Zebra Chip disease in potatoes. Biosystems Engineering, 197, 306–317.
Griffel L M, Delparte D, Edwards J. 2018. Using Support Vector Machines classification to differentiate spectral signatures of potato plants infected with Potato Virus Y. Computers and Electronics in Agriculture, 153, 318–324.
Guo P, Wang G P, Jin L J, Fan X Q, He H L, Zhou P W, Guo X R, Li W Z, Yuan G H. 2018. Identification of summer nectar plants contributing to outbreaks of Mythimna separata (Walker) (Lepidoptera: Noctuidae) in North China. Journal of Integrative Agriculture, 17, 1516–1526.
He K M, Zhang X Y, Ren S Q, Sun J. 2016. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Las Vegas, USA. pp. 770–778.
Huang T, Yang R, Huang W S, Huang Y Q, Qiao X. 2017. Detecting sugarcane borer diseases using support vector machine. Information Processing in Agriculture, 5, 74–82.
Ieracitano C, Paviglianiti A, Campolo M, Hussain A, Pasero E, Morabito F C. 2021. A novel automatic classification system based on hybrid unsupervised and supervised machine learning for electrospun nanofibers. IEEE/CAA Journal of Automatica Sinica, 8, 64–76.
Jie Z Q, Liang X D, Feng J S, Jin X J, Lu W F, Yan S C. 2016. Tree-structured reinforcement learning for sequential object localization. In: 2016 MIT Conference on Neural Information Processing Systems. MIT Press, Barcelona, Spain. pp. 127–135.
Johannes A, Picon A, Alvarezgila A, Echazarra J, Rodriguezvaamonde S, Navajas A D, Ortizbarredo A. 2017. Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Computers and Electronics in Agriculture, 138, 200–209.
Lam M, Mahasseni B, Todorovic S. 2017. Fine-grained recognition as hsnet search for informative image parts. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Honolulu, Hawaii, USA. pp. 6497–6506.
Lei R, Kong J, Qiu Y H, Chen N Z, Zhu S F, Wang X Y. 2019. Rapid detection of the pathogenic fungi causing blackleg of Brassica napus using a portable real-time fluorescence detector. Food Chemistry, 288, 57–67.
Lin T, Dollar P, Girshick R, He K M, Hariharan B, Belongie S. 2017. Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Honolulu, Hawaii, USA. pp. 936–944.
Liu H, Zhou M, Liu Q. 2019. An embedded feature selection method for imbalanced data classification. IEEE/CAA Journal of Automatica Sinica, 6, 703–715.
Mohanty S P, Hughes D P, Salathe M. 2016. Using deep learning for image-based plant disease detection. Frontiers in Plant Science, 7, 1419–1419.
Mustafa M S, Husin Z, Tan W K, Mavi M F, Farook R S M. 2020. Development of automated hybrid intelligent system for herbs plant classification and early herbs plant disease detection. Neural Computing and Applications, 32, 11419–11441.
Nandhini S A, Hemalatha R, Radha S, Indumathi K. 2018. Web enabled plant disease detection system for agricultural applications using WMSN. Wireless Personal Communication, 102, 725–740.
Picon A, Alvarezgila A, Seitz M, Ortizbarredo A, Echazarra J, Johannes A. 2019. Deep convolutional neural networks for mobile capture device-based crop disease classification in the wild. Computers and Electronics in Agriculture, 161, 280–290.
Qiao X, Li Y Z, Su G Y, Tian H K, Zhang S, Sun Z Y, Yang L, Wan F H, Qian W Q. 2020. MmNet: Identifying Mikania micrantha Kunth in the wild via a deep Convolutional Neural Network. Journal of Integrative Agriculture, 19, 1292–1300.
Ren S Q, He K M, Girshick R, Sun J. 2015. Faster R-CNN: towards real-time object detection with region proposal networks. In: 2015 MIT Conference on Neural Information Processing Systems. MIT Press, Montreal, Canada. pp. 91–99.
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z H, Karpathy A, Khosla A, Bernstein M S, Berg A C, Li F F. 2015. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, 115, 211–252.
Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. In: 2015 International Conference on Learning Representations. San Diego, CA, USA.
Sinha R, Khot L R, Rathnayake A P, Gao Z, Naidu R A. 2019.Visible-near infrared spectroradiometry-based detection of grapevine leafroll-associated virus 3 in a red-fruited wine grape cultivar. Computers and Electronics in Agriculture, 162, 165–173.
Singh V, Misra A K. 2017. Detection of plant leaf diseases using image segmentation and soft computing techniques. Information Processing in Agriculture, 4, 41–49.
Srivastava N, Kapoor R, Kumar R, Kumar S, Saritha R K, Kumar S, Baranwal V K. 2019. Rapid diagnosis of Cucumber mosaic virus in banana plants using a fluorescence-based real-time isothermal reverse transcription-recombinase polymerase amplification assay. Journal of Virological Methods, 270, 52–58.
Sun Y Y, Jiang Z H, Zhang L P, Dong W, Rao Y. 2019. SLIC_SVM based leaf diseases saliency map extraction of tea plant. Computers and Electronics in Agriculture, 157, 102–109.
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. 2016. Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Las Vegas, USA. pp. 2818–2826.
Toseef M, Khan M J. 2018. An intelligent mobile application for diagnosis of crop diseases in Pakistan using fuzzy inference system. Computers and Electronics in Agriculture, 153, 1–11.
Uijlings J, Sande K E, Gevers T, Smeulders A W M. 2013. Selective search for object recognition. International Journal of Computer Vision, 104, 154–171.
Yu X, Kang C, Guttery D S, Kadry S, Chen Y, Zhang Y D. 2020. ResNet-SCDA-50 for breast abnormality classification. IEEE/ACM Transactions on Computational Biology and Bioinformatics, doi: 10.1109/TCBB.2020.2986544.
Zhang Y, Wang G, Dong J, Zhong C, Chang L, Zhang H. 2017. The current progress in strawberry breeding in China. Acta Horticulturae, 1156, 7–12.
Zhao Y Q, Tian Y L, Wang L M, Geng G M, Zhao W J, Hu B S, Zhao Y F. 2019. Fire blight disease, a fast-approaching threat to apple and pear production in China. Journal of Integrative Agriculture, 18, 117–122.
Zhong S, Xu J M, Yin S L, Zhang G Z. 2015. First report of root rot on strawberry caused by binucleate rhizoctonia AG-A in China. Plant Disease, 100, 225–225.
Zhu W J, Chen H, Ciechanowska I, Spaner D. 2018. Application of infrared thermal imaging for the rapid diagnosis of crop disease. IFAC-PapersOnLine, 51, 424–430.
Zoph B, Vasudevan V K, Shlens J, Le Q V. 2018. Learning transferable architectures for scalable image recognition. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Salt Lake City, Utah, USA. pp. 8697–8710.
|