Bantis F, Smirnakou S, Ouzounis T, Koukounaras A, Ntagkas N, Radoglou K. 2018. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia Horticulturae, 235, 437–451.
Behar-Cohen F, Martinsons C, Viénot F, Zissis G, Barlier-Salsi A, Cesarini J P, Enouf O, Garcia M, Picaud S, Attia D. 2011. Light-emitting diodes (LED) for domestic lighting: Any risks for the eye? Progress in Retinal and Eye Research, 30, 239–257.
Demotes-Mainard S, Péron T, Corot A, Bertheloot J, Le Gourrierec J, Pelleschi-Travier S, Crespel L, Morel P, Huché-Thélier L, Boumaza R, Vian A, Guérin V, Leduc N, Sakr S. 2016. Plant responses to red and far-red lights, applications in horticulture. Environmental and Experimental Botany, 121, 4–21.
Fankhauser C, Batschauer A. 2016. Shadow on the Plant: A strategy to exit. Cell, 164, 15–17.
Franklin K A. 2008. Shade avoidance. New Phytologist, 179, 930–944.
Franklin K A, Whitelam G C. 2005. Phytochromes and shade-avoidance responses in plants. Annals of Botany, 96, 169–175.
Hernández R, Kubota C. 2016. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany, 121, 66–74.
Hogewoning S W, Douwstra P, Trouwborst G, van Ieperen W, Harbinson J. 2010a. An artificial solar spectrum substantially alters plant development compared with usual climate room irradiance spectra. Journal of Experimental Botany, 61, 1267–1276.
Hogewoning S W, Trouwborst G, Maljaars H, Poorter H, van Ieperen W, Harbinson J. 2010b. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 61, 3107–3117.
Hogewoning S W, Wientjes E, Douwstra P, Trouwborst G, van Ieperen W, Croce R, Harbinson J. 2012. Photosynthetic quantum yield dynamics: From photosystems to leaves. The Plant Cell, 24, 1921–1935.
Johkan M, Shoji K, Goto F, Hahida S, Yoshihara T. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environmental and Experimental Botany, 75, 128–133.
Kaiser E, Ouzounis T, Giday H, Schipper R, Heuvelink E, Marcelis L F M. 2019. Adding blue to red supplemental light increases biomass and yield of greenhouse-grown tomatoes, but only to an optimum. Frontiers in Plant Science, doi: 10.3389/fpls.2018.02002
Kim H H, Goins G D, Wheeler R M, Sager J C. 2004. Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. HortScience, 39, 1617–1622.
Kwack Y, Kim K K, Hwang H, Chun C. 2015. Growth and quality of sprouts of six vegetables cultivated under different light intensity and quality. Horticulture, Environment and Biotechnology, 56, 437–443.
Lin K H, Huang M Y, Huang W D, Hsu M H, Yang Z W, Yang C M. 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150, 86–91.
McCree K J. 1972. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology, 9, 191–216.
Morrow R C. 2008. LED lighting in horticulture. HortScience, 43, 1947–1950.
Park Y, Runkle E S. 2017. Far-red radiation promotes growth of seedlings by increasing leaf expansion and whole-plant net assimilation. Environmental and Experimental Botany, 136, 41–49.
Rehman M, Ullah S, Bao Y, Wang B, Peng D, Liu L. 2017. Light-emitting diodes: Whether an efficient source of light for indoor plants? Environmental Science and Pollution Research, 24, 24743–24752.
Sager J C, Smith W O, Edwards J L, Cyr K L. 1988. Photosynthetic efficiency and phytochrome photoequilibria determination using spectral data. Transactions of the ASAE, 31, 1882–1889.
Sarlikioti V, de Visser P H B, Buck-Sorlin G H, Marcelis L F M. 2011. How plant architecture affects light absorption and photosynthesis in tomato: Towards an ideotype for plant architecture using a functional–structural plant model. Annals of Botany, 108, 1065–1073.
Smith H. 1982. Light quality, photoperception, and plant strategy. Annual Review of Plant Physiology, 33, 481–518.
Terfa M T, Solhaug K A, Gislerød H R, Olsen J E, Torre S. 2013. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa × hybrida but does not affect time to flower opening. Physiologia Plantarum, 148, 146–159.
Wellburn R W. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307–313.
Wright H R, Lack L C, Partridge K J. 2001. Light emitting diodes can be used to phase delay the melatonin rhythm. Journal of Pineal Research, 31, 350–355.
Zhang Y, Zhang Y, Yang Q, Li T. 2019. Overhead supplemental far-red light stimulates tomato growth under intra-canopy lighting with LEDs. Journal of Integrative Agriculture, 18, 62–69.
Zou J, Zhang Y, Zhang Y, Bian Z, Fanourakis D, Yang Q, Li T. 2019. Morphological and physiological properties of indoor cultivated lettuce in response to additional far-red light. Scientia Horticulturae, 257, 108725. |