Journal of Integrative Agriculture ›› 2020, Vol. 19 ›› Issue (4): 953-964.DOI: 10.1016/S2095-3119(19)62676-6
收稿日期:
2018-12-24
出版日期:
2020-04-01
发布日期:
2020-03-04
Received:
2018-12-24
Online:
2020-04-01
Published:
2020-03-04
Contact:
Correspondence LIU Zhi-hua, Tel: +86-451-55191173, E-mail: Zhihua-liu@neau.edu.cn; LI Wen-bin, Tel: +86-451-55190778, E-mail: Wenbinli@neau.edu.cn
About author:
JIANG Zhen-feng, E-mail: jzhf@neau.edu.cn;
Supported by:
. [J]. Journal of Integrative Agriculture, 2020, 19(4): 953-964.
JIANG Zhen-feng, LIU Dan-dan, WANG Tian-qiong, LIANG Xi-long, CUI Yu-hai, LIU Zhi-hua, LI Wen-bin. Concentration difference of auxin involved in stem development in soybean[J]. Journal of Integrative Agriculture, 2020, 19(4): 953-964.
Adamowski M, Friml J. 2015. PIN-dependent auxin transport, action, regulation, and evolution. The Plant Cell, 27, 20–32. Akpunarlieva S, Weidt S, Lamasudin D, Naula C, Henderson D, Barrett M, Burgess K, Burchmore R. 2017. Integration of proteomics and metabolomics to elucidate metabolic adaptation in Leishmania. Journal of Proteomics, 155, 85–98. Amiour N, Imbaud S, Clément G, Agier N, Zivy M, Valot B, Balliau T, Armengaud P, Quilleré I, Cañas R, Tercet-Laforgue T, Hirel B. 2012. The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize. Journal of Experimental Botany, 63, 5017–5033. Babitzke P. 2004. Regulation of transcription attenuation and translation initiation by allosteric control of an RNA-binding protein, the Bacillus subtilis TRAP protein. Current Opinion in Microbiology, 7, 132–139. Bajguz A, Piotrowska A. 2009. Conjugates of auxin and cytokinin. Phytochemistry, 70, 957–969. Bartel B, LeClere S, Magidin M, Zolman B K. 2001. Inputs to the active indole-3-acetic acid pool, de novo synthesis, conjugate hydrolysis, and indole-3-butyric acid β-oxidation. Journal of Plant Growth Regulation, 20, 198–216. Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Frim J. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 115, 591–602. Béziat C, Kleine-Vehn J. 2018. The road to auxin-dependent growth repression and promotion in apical hooks. Current Biology, 28, R519–R525. Bouchard R, Bailly A, Blakeslee J J, Oehring S C, Vincenzetti V, Lee O R, Paponov I, Palme K, Mancuso S, Murphy A S, Schulz B, Geisler M. 2006. Immunophilin-like TWISTED DWARF1 modulates auxin efflux activities of Arabidopsis P-glycoproteins. The Journal of Biological Chemistry, 281, 30603–30612. Brown D E, Rashotte A M, Murphy A S, Normanly J, Tague B W, Peer W A, Taiz L, Muday G K. 2001. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiology, 126, 524–535. Buer C S, Muday G K. 2004. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light. The Plant Cell, 16, 1191–1205. Chen W, Gong L, Guo Z, Wang W, Zhang H, Liu X, Yu S, Xiong L, Luo J. 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites, application in the study of rice metabolomics. Molecular Plant, 6, 1769–1780. Chen W, Wang W, Peng M, Gong L, Gao Y, Wan J, Wang S, Shi L, Zhou B, Li Z, Peng X, Yang C, Qu L, Liu X, Luo J. 2016. Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals. Nature Communication, 7, 12767. Chen Y, Zhou Q, Tian R, Ma Z, Zhao X, Tang J, Fu Z. 2018. Proteomic analysis reveals that auxin homeostasis influences the eighth internode length heterosis in maize (Zea mays). Scientific Reports, 8, 7159. Cho M, Cho H T. 2013. The function of ABCB transporters in auxin transport. Plant Signal Behavior, 8, e22990. Chubukov V, Zuleta I A, Li H. 2012. Regulatory architecture determines optimal regulation of gene expression in metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America, 109, 5127–5132. Cooper R L. 1995. Registration of ‘Charleston’ soybean. Crop Science, 35, 592. Du F, Ruan G, Liu H. 2012. Analytical methods for tracing plant hormones. Analytical and Bioanalytical Chemistry, 403, 55–74. Esmon C A, Tinsley A G, Ljung K, Sandberg G, Hearne L B, Liscum E. 2006. A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proceedings of the National Academy of Sciences of the United States of America, 103, 236–241. Forestan C, Varotto S. 2012. The role of PIN auxin efflux carriers in polar auxin transport and accumulation and their effect on shaping maize development. Molecular Plant, 5, 787–798. Gong L, Chen W, Gao Y, Liu X, Zhang H, Xu C, Yu S, Zhang Q, Luo J. 2013. Genetic analysis of the metabolome exemplified using a rice population. Proceedings of the National Academy of Sciences of the United States of America, 110, 20320–20325. Gray W M, Östin A, Sandberg G, Romano C P, Estelle M. 1998. High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 95, 7197–7202. Izumi Y, Okazawa A, Bamba T, Kobayashi A, Fukusaki E. 2009. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry. Analytica Chimica Acta, 648, 215–225. Jacobs M, Rubery P H. 1988. Naturally occurring auxin transport regulators. Science, 241, 346–349. Jager C E, Symons G M, Nomura T, Yamada Y, Smith J J, Yamaguchi S, Kamiya Y, Weller J L, Yokota T, Reid J B. 2007. Characterization of two brassinosteroid C-6 oxidase genes in pea. Plant Physiology, 143, 1894–1904. Kuhn B M, Errafi S, Bucher R, Dobrev P, Geisler M, Bigler L, Za?ímalová E, Ringli C. 2016. 7-Rhamnosylated flavonols modulate homeostasis of the plant hormone auxin and affect plant development. The Journal of Biological Chemistry, 291, 5385–5395. Kutschera U, Briggs W R. 1987. Rapid auxin-induced stimulation of cell wall synthesis in pea internodes. Proceedings of the National Academy of Sciences of the United States of America, 84, 2747–2751. Ladurner A G. 2006. Rheostat control of gene expression by metabolites. Molecular Cell, 24, 1–11. Lavy M, Estelle M. 2016. Mechanisms of auxin signaling development. Development, 143, 3226–3229. LeClere S, Tellez R, Rampey R A, Matsuda S P, Bartel B. 2002. Characterization of a family of IAA-amino acid conjugate hydrolases from Arabidopsis. The Journal of Biological Chemistry, 277, 20446–20452. Leyser O. 2018. Auxin signaling. Plant Physiology, 176, 465–479. Li J, Li C, Smith S. 2017. Hormone Metabolism and Signaling in Plants. 1st ed. Academic Press, Beijing. p. 616. Libbert E, Fischer E, Drawert A, Schröuder R. 1970. Pathways of IAA production from tryptophan by plants and by their epiphytic bacteria, a comparison. II. Establishment of the tryptophan metabolites, effects of a native inhibitor. Physiologia Plantarum, 23, 278. Ljung K, Bhalerao R P, Sandberg G. 2001. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. The Plant Journal, 28, 465–474. Ludwig-Müller J. 2000. Indole-3-butyric acid in plant growth and development. Plant Growth Regulation, 32, 219–230. Ludwig-Müller J. 2011. Auxin conjugates: Their role for plant development and in the evolution of land plants. Journal of Experimental Botany, 62, 1757–1773. Luo J. 2015. Metabolite-based genome-wide association studies in plants. Current Opinion in Plant Biology, 24, 31–38. Di Mambro R, De Ruvo M, Pacifici E, Salvi E, Sozzani R, Benfey P N, Busch W, Novak O, Ljung K, Di Paola L, Marée A F M, Costantino P, Grieneisen V A, Sabatini S. 2017. Auxin minimum triggers the developmental switch from cell division to cell differentiation in the Arabidopsis root. Proceedings of the National Academy of Sciences of the United States of America, 114, E7641–E7649. Mano Y, Nemoto K. 2012. The pathway of auxin biosynthesis in plants. Journal of Experimental Botany, 63, 2853–2872. Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K, Kamiya Y, Kasahara H. 2011. The main auxin biosynthesis pathway in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 108, 18512–18517. May P, Christian N, Ebenhöh O, Weckwerth W, Walther D. 2011. Integration of proteomic and metabolomic profiling as well as metabolic modeling for the functional analysis of metabolic networks. Methods in Molecular Biology, 694, 341–363. McMaster P, Leyser O. 2005. Shoot branching. Annual Review of Plant Biology, 56, 353–374. Nishida A, Fukuzumi G. 1978. Formation of coniferyl alcohol from ferulic acid by the white-rot fungus Trametes. Phytochemistry, 17, 417–419. Normanly J. 1997. Auxin metabolism. Physiologia Plantarum, 100, 431–442. Pan X, Welti R, Wang X. 2008. Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry, 69, 1773–1781. Péret B, Swarup K, Ferguson A, Seth M, Yang Y, Dhondt S, James N, Casimiro I, Perry P, Syed A, Yang H, Reemmer J, Venison E, Howells C, Perez-Amador M A, Yun J, Alonso J, Beemster G T, Laplaze L, Murphy A, et al. 2012. AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. The Plant Cell, 24, 2874–2885. Perrot-Rechenmann C. 2010. Cellular responses to auxin, division versus expansion. Cold Spring Harbor Perspectives in Biology, 2, a001446. Potters G, Pasternak T P, Guisez Y, Jansen M A. 2009. Different stresses, similar morphogenic responses, integrating a plethora of pathways. Plant, Cell & Environment, 32, 158–169. Qin G, Gu H, Zhao Y, Ma Z, Shi G, Yang Y, Pichersky E, Chen H, Liu M, Chen Z, Qu L J. 2005. An indole-3-acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. The Plant Cell, 17, 2693–2704. Quittenden L J, Davies N W, Smith J A, Molesworth P P, Tivendale N D, Ross J J. 2009. Auxin biosynthesis in pea, characterization of the tryptamine pathway. Plant Physiology, 151, 1130–1138. Rampey R A, LeClere S, Kowalczyk M, Ljung K, Sandberg G, Bartel B. 2004. A family of auxin-conjugate hydrolases that contributes to free indole-3-acetic acid levels during Arabidopsis germination. Plant Physiology, 135, 978–988. Ross J J. 1998. Effects of auxin transport inhibitors on gibberellins in pea. Journal of Plant Growth Regulation, 17, 141–146. Ru?icka K, Hejátko J. 2017. Auxin transport and conjugation caught together. Journal of Experimental Botany, 68, 4409–4412. Seidel C, Walz A, Park S, Cohen J D, Ludwig-Müller J. 2006. Indole-3-acetic acid protein conjugates, novel players in auxin homeostasis. Plant Biology, 8, 340–345. Sieburth L E. 1999. Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiology, 121, 1179–1190. Simon S, Petrášek J. 2011. Why plants need more than one type of auxin. Plant Science, 180, 454–460. Spiess G M, Hausman A, Yu P, Cohen J D, Rampey R A, Zolman B K. 2014. Auxin input pathway disruptions are mitigated by changes in auxin biosynthetic gene expression in Arabidopsis. Plant Physiology, 165, 1092–1104. Staswick P E, Serban B, Rowe M, Tiryaki I, Maldonado M T, Maldonado M C, Suza W. 2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. The Plant Cell, 17, 616–627. Stepanova A N, Robertson-Hoyt J, Yun J, Benavente L M, Xie D Y, Dolezal K, Schlereth A, Jürgens G, Alonso J M. 2008. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell, 133, 177–191. Taylor L P, Grotewold E. 2005. Flavonoids as developmental regulators. Current Opinion in Plant Biology, 8, 317–323. Wang B, Chu J, Yu T, Xu Q, Sun X, Yuan J, Xiong G, Wang G, Wang Y, Li J. 2015. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 112, 4821–4826. Wang B, Smith S M, Li J. 2018. Genetic regulation of shoot architecture. Annual Review of Plant Biology, 69, 437–468. Weijers D, Nemhauser J, Yang Z. 2018. Auxin, small molecule, big impact. Journal of Experimental Botany, 69, 133–136. Westfall C S, Muehler A M, Jez J M. 2013. Enzyme action in the regulation of plant hormone responses. The Journal of Biological Chemistry, 288, 19304–19311. Winkler M, Niemeyer M, Hellmuth A, Janitza P, Christ G, Samodelov S L, Wilde V, Majovsky P, Trujillo M, Zurbriggen M D, Hoehenwarter W, Quint M, Villalobos L I A C. 2017. Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction. Nature Communications, 8, 15706. Wolbang C M, Chandler P M, Smith J J, Ross J J. 2004. Auxin from the developing inflorescence is required for the biosynthesis of active gibberellins in barley stems. Plant Physiology, 134, 769–776. Won C, Shen X L, Mashiguchi K, Zheng Z Y, Dai X H, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y. 2011. Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 108, 18518–8523. Woodward A W, Bartel B. 2005. Auxin, regulation, action, and interaction. Annals of Botany, 95, 707–735. Yang Y, Xu R, Ma C J, Vlot A C, Klessig D F, Pichersky E. 2008. Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis. Plant Physiology, 147, 1034–1045. Yoshihara T, Spalding E P. 2017. LAZY genes mediate the effects of gravity on auxin gradients and plant architecture. Plant Physiology, 175, 959–969. Zhang S W, Li C H, Cao J, Zhang Y C, Zhang S Q, Xia Y F, Sun D Y, Sun Y. 2009. Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiology, 151, 1889–1901. Zhao Y. 2012. Auxin biosynthesis, a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Molecular Plant, 5, 334–338. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||