Albert M, Jehle A K, Fürst U, Chinchilla D, Boller T, Felix G. 2013. A two-hybrid-receptor assay demonstrates heteromer formation as switch-on for plant immune receptors. Plant Physiology, 163, 1504–1509.
Böhm H, Albert I, Fan L, Reinhard A, Nürnberger T. 2014. Immune receptor complexes at the plant cell surface. Current Opinion in Plant Biology, 20, 47–54.
Boller T, Felix G. 2009. A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406.
Cai R, Lewis J, Yan S, Liu H, Clarke C R, Campanile F, Almeida N F, Studholme D J, Lindeberg M, Schneider D, Zaccardelli M, Setubal J C, Morales-Lizcano N P, Bernal A, Coaker G, Baker C, Bender C L, Leman S, Vinatzer B A. 2011. The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity. PLoS Pathogens, 7, e1002130.
Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G. 2006. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. The Plant Cell, 18, 465–476.
Chinchilla D, Shan L, He P, de Vries S, Kemmerling B. 2009. One for all: The receptor-associated kinase BAK1. Trends in Plant Science, 14, 535–541.
Clarke C R, Chinchilla D, Hind S R, Taguchi F, Miki R, Ichinose Y, Martin G B, Leman S, Felix G, Vinatzer B A. 2013. Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. New Phytologist, 200, 847–860.
Dou D, Zhou J M. 2012. Phytopathogen effectors subverting host immunity: Different foes, similar battleground. Cell Host & Microbe, 12, 484–495.
Felix G, Duran J D, Volko S, Boller T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal, 18, 265–276.
Gómez-Gómez L, Boller T. 2000. FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell, 5, 1003–1011.
Gómez-Gómez L, Felix G, and Boller T. 1999. A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. The Plant Journal, 18, 277–284.
Gust A A, Biswas R, Lenz H D, Rauhut T, Ranf S, Kemmerling B, Götz F, Glawischnig E, Lee J, Felix G, Nürnberger T. 2007. Bacteria-derived peptidoglycans constitute pathogen-associated molecular patterns triggering innate immunity in Arabidopsis. The Journal of Biological Chemistry, 282, 32338–32348.
Hao G, Pitino M, Duan Y, Stover E. 2016. Reduced susceptibility to Xanthomonas citri in transgenic citrus expressing the FLS2 receptor from Nicotiana benthamiana. Molecular Plant-Microbe Interactions, 29, 132–142.
Hu D G, Sun C H, Zhang Q Y, An J P, You C X, Hao Y J. 2016. Glucose sensor MdHXK1 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin biosynthesis in apple. PLoS Genetics, 12, e1006273.
Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G. 2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. The Plant Cell, 16, 3496–3507.
Liu M, Lei L, Powers C, Liu Z, Campbell K G, Chen X, Bowden R L, Carver B F,Yan L. 2016. TaXA21-A1 on chromosome 5AL is associated with resistance to multiple pests in wheat. Theoretical and Applied Genetics, 129, 345–355.
Lu D, Lin W, Gao X, Wu S, Cheng C, Avila J, Heese A, Devarenne T P, He P, Shan L. 2011. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science, 332, 1439–1442.
Meyer A, Pühler A, Niehaus K. 2001. The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum. Planta, 213, 214–222.
Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 104, 19613–19618.
Monaghan J, Zipfel C. 2012. Plant pattern recognition receptor complexes at the plasma membrane. Current Opinion in Plant Biology, 15, 349–357.
Ottmann C, Luberacki B, Küfner I, Koch K, Brunner F, Weyand M, Mattinen L, Pirhonen M, Anderluh G, Seitz H U, Nürnberger T, Oecking C. 2009. A common toxin fold mediates microbial attack and plant defense. Proceedings of the National Academy of Sciencesof the United States of America, 106, 10359–10364.
Takeuchi O, Akira S. 2010. Pattern recognition receptors and inflammation. Cell, 140, 805–820.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.
Thomma B P, Nürnberger T, Joosten M H. 2011. Of PAMPs and effectors: The blurred PTI-ETI dichotomy. The Plant Cell, 23, 4–15.
Trdá L, Fernandez O, Boutrot F, Heloir M, Kelloniemi J, Daire X, Adrian M, Clement C, Zipfel C, Dorey S. 2013. The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. New Phytologist, 201, 1371–1384.
Win J, Chaparro-Garcia A, Belhaj K, Saunders D G O, Yoshida K, Dong S, Schornack S, Zipfel C, Robatzek S, Hogenhout S A, Kamoun S. 2012. Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harbor Symposia on Quantitative Biology, 77, 235–247.
Zhao T, Jiang J, Liu G, He S, Zhang H, Chen X, Li J, Xu X. 2016. Mapping and candidate gene screening of tomato Cladosporium fulvum-resistant gene Cf-19, based on high-throughput sequencing technology. BMC Plant Biology, 16, 51.
Zipfel C, Oldroyd G E D. 2017. Plant signalling in symbiosis and immunity. Nature, 543, 328–336.
|