Journal of Integrative Agriculture ›› 2019, Vol. 18 ›› Issue (2): 316-327.DOI: 10.1016/S2095-3119(18)61988-4

• 论文 • 上一篇    下一篇

  

  • 收稿日期:2017-12-21 出版日期:2019-02-01 发布日期:2019-01-29

Remotely sensed estimation and mapping of soil moisture by eliminating the effect of vegetation cover

WU Cheng-yong1, 2, CAO Guang-chao2, CHEN Ke-long2, E Chong-yi1, 2, MAO Ya-hui1, 2, ZHAO Shuang-kai1, 2, WANG Qi1, 2, SU Xiao-yi1, 2, WEI Ya-lan1, 2 
  

  1. 1 College of Geographical Sciences, Qinghai Normal University, Xining 810008, P.R.China
    2 Key Laboratory of Environment and Ecology of Qinghai-Tibet Plateau, Ministry of Education/Qinghai Key Laboratory of Natural Geography and Environmental Processes, Xining 810008, P.R.China
  • Received:2017-12-21 Online:2019-02-01 Published:2019-01-29
  • Contact: Correspondence CHEN Ke-long, Mobile: +86-18997295071, E-mail: ckl7813@163.com
  • About author: WU Cheng-yong, E-mail: giswuchengyong@163.com;
  • Supported by:
    This work was supported by the National Philosophy and Social Science Foundation of China (14XMZ072), the Natural Science Foundation of Qinghai Province, China (2017-ZJ-901 and 2014-ZJ-723), the National Natural Science Foundation of China (40861022 and 41661023), and the Cooperative Scientific Research Project of “Chunhui Plan”, Ministry of Education of China (Z2012092 and S2016026).

Abstract:

Soil moisture (SM), which plays a crucial role in studies of the climate, ecology, agriculture and the environment, can be estimated and mapped by remote sensing technology over a wide region.  However, remotely sensed SM is constrained by its estimation accuracy, which mainly stems from the influence of vegetation cover on soil spectra information in mixed pixels.  To overcome the low-accuracy defects of existing surface albedo method for estimating SM, in this paper, Qinghai Lake Basin, an important animal husbandry production area in Qinghai Province, China, was chosen as an empirical research area.  Using the surface albedo computed from moderate resolution imaging spectroradiometer (MODIS) reflectance products and the actual measured SM data, an albedo/vegetation coverage trapezoid feature space was constructed.  Bare soil albedo was extracted from the surface albedo mainly containing information of soil, vegetation, and both albedo models for estimating SM were constructed separately.  The accuracy of the bare soil albedo model (root mean square error=4.20, mean absolute percent error=22.75%, and theil inequality coefficient=0.67) was higher than that of the existing surface albedo model (root mean square error=4.66, mean absolute percent error=25.46% and theil inequality coefficient=0.74).  This result indicated that the bare soil albedo greatly improved the accuracy of SM estimation and mapping.  As this method eliminated the effect of vegetation cover and restored the inherent soil spectra, it not only quantitatively estimates and maps SM at regional scales with high accuracy, but also provides a new way of improving the accuracy of soil organic matter estimation and mapping. 

Key words: soil moisture ,  remote sensing ,  bare soil albedo ,  trapezoid feature space ,  Qinghai Lake Basin