Bai Y C, Zang C Y, Gu M J, Gu C H, Shao H B, Guan Y X, Wang X K, Zhou X J, Shan Y H, Feng K. 2016. Sewage sludge as an initial fertility driver for rapid improvement of mudflat salt-soils. Science of the Total Environment, 578, 47–55.
Bravo-Martin-Consuegra S, Garcia-Navarro F J, Amoros-Ortiz-Villajos J A, Perez-de-los-Reyes C, Higueras P L. 2015. Effect of the addition of sewage sludge as a fertilizer on a sandy vineyard soil. Journal of Soils & Sediments, 16, 1360–1365.
Chaudri A, Mcgrath S, Gibbs P, Chambers B, Carlton-Smith C, Godley A, Bacon J, Campbell C, Aitken M. 2007. Cadmium availability to wheat grain in soils treated with sewage sludge or metal salts. Chemosphere, 66, 1415–1423.
CEU (Council of the European Union). 1999. Council Directive 1999/ 31/ EC of 26 April 1999 on the landfill of waste. [2017-06-28]. http://www.eugris.info/displayresource.aspx?r=5795
Chen T B, Huang Q F, Gao D, Wu J F. 2003. Heavy metal concentrations and their decreasing trends in sewage sludges of China. Acta Scientiae Circumstantiae, 23, 561–569. (in Chinese)
Cooper J L. 2005. The effect of biosolids on cereals in central New South Wales, Australia. 2. Soil levels and plant uptake of heavy metals and pesticides. Australian Journal of Experimental Agriculture, 45, 445–451.
Feng L Y, Luo J Y, Chen Y G. 2015. Dilemma of sewage sludge treatment and disposal in China. Environmental Science & Technology, 49, 4781–4782.
Fytili D, Zabaniotou A. 2008. Utilization of sewage sludge in EU application of old and new methods - A review. Renewable & Sustainable Energy Reviews, 12, 116–140.
GB 15618-1995. 1995. Environmental Quality Standard for Soils, the National Standard of China. The Ministry of Environmental Protection of China, State Technical Supervision Bureau of China. (in Chinese)
GB 2715-2005. 2005. Hygienic Standard for Grains, the National Standard of China. The Ministry of Health of China, Standardization Administration of China. (in Chinese)
Grobelak A, Placek A, Grosser A, Singh B, Kacprzak M. 2017. Effects of single sewage sludge application on soil phytoremediation. Journal of Cleaner Production, 155, 189–197.
Harrison E Z, McBride M B, Bouldin D R. 1999. Land application of sewage sludges: An appraisal of the US regulations. International Journal of Environment & Pollution, 11, 1–36.
Herzel H, Kruger O, Hermann L, Adam C. 2015. Sewage sludge ash - A promising secondary phosphorus source for fertilizer production. Science of the Total Environment, 542, 1136–1143.
Jamali M K, Kazi T G, Arain M B, Afridi H I, Jalbani N, Kandhro G A, Shah A Q, Baig J A. 2009. Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge. Journal of Hazardous Materials, 164, 1386–1391.
Kacprzak M, Neczaj E, Fijalkowski K, Grobelak A, Grosser A, Worw?g M, Rorat A, Brattebo H, Almas A, Singh B R. 2017. Sewage sludge disposal strategies for sustainable development. Environmental Research, 156, 39–46.
Karami M, Afyuni M, Rezainejad Y, Schulin R. 2009. Heavy metal uptake by wheat from a sewage sludge-amended calcareous soil. Nutrient Cycling in Agroecosystems, 83, 51–61.
Lavado R S. 2006. Effects of sewage sludge application on soils and sun?ower yield: Quality and toxic element accumulation. Journal of Plant Nutrition, 29, 975–984.
Li Q. 2012. Feasibility and Risk Assessment Study of Biosolids Agricultural Application. Capital Normal University, Beijing. (in Chinese)
Li Q, Guo X Y, Xu X H, Zuo Y B, Wei D P, Ma Y B. 2012a. Phytoavailability of copper, zinc and cadmium in sewage sludge-amended calcareous soils. Pedosphere, 22, 254–262.
Li Q, Li J M, Cui X L, Wei D P, Ma Y B. 2012b. On-farm assessment of biosolids effects on nitrogen and phosphorus accumulation in soils. Journal of Integrative Agriculture, 11, 1545–1554.
Li Q, Xu X H, Zuo Y B. 2009. Effects of biosolid on the accumulation and transfer of trace elements in soil-wheat/maize system. Journal of Agro-Environment Science, 28, 2042–2049. (in Chinese)
Lu R K. 1998. Agricultural-Chemical Analysis Methods in Soil. China Science Press, Beijing. (in Chinese)
McKenzie N, Coughlan K, Cresswell H. 2002. Soil physical measurement and interpretation for land evaluation. Geoderma, 123, 190–191.
McLaughlin M J, Whatmuff M, Warne M, Heemsbergen D, Barry G, Bell M, Nash D, Pritchard D. 2006. A field investigation of solubility and food chain accumulation of biosolid-cadmium across diverse soil types. Environmental Chemistry, 3, 428–432.
Moreno J L, Garcia C, Hernandez T, Ayuso M. 1997. Application of composted sewage sludges contaminated with heavy metals to an agricultural soil: Effect on lettuce growth. Soil Science & Plant Nutrition, 43, 565–573.
Naidu R, Oliver D, McConnell S. 2003. Heavy metal phytotoxicity in soils. In: Langley A, Gilbey M, Kennedy B, eds., Proceedings of the Fifth National Workshop on the Assessment of Site Contamination. National Environment Protection Council Service Corporation, Adelaide SA.
Oleszczuk P, Hollert H. 2011. Comparison of sewage sludge toxicity to plants and invertebrates in three different soils. Chemosphere, 83, 502–509.
Oliver D P, Hannam R, Tiller K G, Wilhelm N S, Merry R H, Cozens G D. 1994. The effects of zinc fertilization on cadmium concentration in wheat grain. Journal of Environmental Quality, 23, 705–711.
Page A L, Miller R H, Keeney D R. 1982. Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties. American Society of Agronomy, Soil Science Society of America, Madison, WI, USA.
Pasqualone A, Summo C, Centomani I, Lacolla G, Caranfa G, Cucci G. 2016. Effect of composted sewage sludge on morpho-physiological growth parameters, grain yield and selected functional compounds of barley. Journal of Science of Food & Agriculuture, 97, 1502–1508.
Richards B K, Steenhuis T S, Peverly J H, Mcbride M B. 1998. Metal mobility at an old, heavily loaded sludge application site. Environmental Pollution, 99, 365–377.
Rigby H, Clarke B O, Pritchard D L, Meehan B, Beshah F, Smith S R, Porter N A. 2015. A critical review of nitrogen mineralization in biosolids-amended soil, the associated fertilizer value for crop production and potential for emissions to the environment. Science of the Total Environment, 541, 1310–1338.
Shao J G, Yuan X Z, Leng L J, Huang H J, Jiang L B, Wang H, Chen X H, Zeng G M. 2015. The comparison of the migration and transformation behavior of heavy metals during pyrolysis and liquefaction of municipal sewage sludge, paper mill sludge, and slaughterhouse sludge. Bioresource Technology, 198, 16–22.
Siebielska I. 2014. Comparison of changes in selected polycyclic aromatic hydrocarbons concentrations during the composting and anaerobic digestion processes of municipal waste and sewage sludge mixtures. Water Science & Technology, 70, 1617–1624.
Singh R, Agrawal M. 2007. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere, 67, 2229–2240.
Singh R, Agrawal M. 2008. Potential benefits and risks of land appliation of sewage sludge. Waste Management, 28, 347–358.
Singh R, Agrawal M. 2010. Effect of different sewage sludge applications on growth and yield of Vigna radiata L. field crop: Metal uptake by plant. Ecological Engineering, 36, 969–972.
Sukkariyah B F, Evanylo G, Zelazny L, Chaney P L. 2005. Cadmium, copper, nickel, and zinc availability in a biosolids-amended piedmont soil years after application. Journal of Environmental Quality, 34, 2255–2262.
US EPA (United States Environmental Protection Agency). 1996. Microwave Assisted Acid Digestion of Siliceous and Organically Based Matrices. Method 3052. Office of Solid Waste and Emergency Response, U.S. Government Printing Office, Washington, D.C.
Walter I, Martinez F, Cala V. 2006. Heavy metal speciation and phytotoxic effects of three representative sewage sludges for agricultural uses. Environmental Pollution, 139, 507–514.
|