Journal of Integrative Agriculture ›› 2018, Vol. 17 ›› Issue (01): 111-121.DOI: 10.1016/S2095-3119(17)61714-3

• 论文 • 上一篇    下一篇

  

  • 收稿日期:2017-02-10 出版日期:2018-01-20 发布日期:2018-01-04

Leaf area index based nitrogen diagnosis in irrigated lowland rice

LIU Xiao-jun, CAO Qiang, YUAN Zhao-feng, LIU Xia, WANG Xiao-ling, TIAN Yong-chao, CAO Wei-xing, ZHU Yan   

  1. National Engineering and Technology Center for Information Agriculture/Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture/Jiangsu Key Laboratory for Information Agriculture/Jiangsu Collaborative Innovation Center for Modern Crop Production/Nanjing Agricultural University, Nanjing 210095, P.R.China
  • Received:2017-02-10 Online:2018-01-20 Published:2018-01-04
  • Contact: Correspondence ZHU Yan, Tel: +86-25-84396598, Fax: +86-25-84396672, E-mail: yanzhu@njau.edu.cn
  • About author:LIU Xiao-jun, E-mail: liuxj@njau.edu.cn
  • Supported by:

    This work was supported by the Special Program for Agriculture Science and Technology from the Ministry of Agriculture of China (201303109), the National Key Research & Development Program of China (2016YFD0300604; 2016YFD0200602), the Fundamental Research Funds for the Central Universities, China (262201602), the Priority Academic Program Development of Jiangsu Higher Education Institutions of China (PAPD), and the 111 Project of China (B16026).

Abstract: Leaf area index (LAI) is used for crop growth monitoring in agronomic research, and is promising to diagnose the nitrogen (N) status of crops.  This study was conducted to develop appropriate LAI-based N diagnostic models in irrigated lowland rice.  Four field experiments were carried out in Jiangsu Province of East China from 2009 to 2014.  Different N application rates and plant densities were used to generate contrasting conditions of N availability or population densities in rice.  LAI was determined by LI-3000, and estimated indirectly by LAI-2000 during vegetative growth period.  Group and individual plant characters (e.g., tiller number (TN) and plant height (H)) were investigated simultaneously.  Two N indicators of plant N accumulation (NA) and N nutrition index (NNI) were measured as well.  A calibration equation (LAI=1.7787LAI2000–0.8816, R2=0.870**) was developed for LAI-2000.  The linear regression analysis showed a significant relationship between NA and actual LAI (R2=0.863**).  For the NNI, the relative LAI (R2=0.808**) was a relatively unbiased variable in the regression than the LAI (R2=0.33**).  The results were used to formulate two LAI-based N diagnostic models for irrigated lowland rice (NA=29.778LAI–5.9397; NNI=0.7705RLAI+0.2764).  Finally, a simple LAI deterministic model was developed to estimate the actual LAI using the characters of TN and H (LAI=–0.3375(TH×H×0.01)2+3.665(TH×H×0.01)–1.8249, R2=0.875**).  With these models, the N status of rice can be diagnosed conveniently in the field.

Key words: leaf area index ,  rice ,  LAI-2000 ,  nitrogen diagnosis , plant characters