Allenby N E E, O’Connor N, Pragai Z, Ward A C, Wipat A, Harwood C R. 2005. Genome-wide transcriptional analysis of the phosphate starvation stimulon of Bacillus subtilis. Journal of Bacteriology, 187, 8063–8080. Arnaud M, Chastanet A, Debarbouille M. 2004. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, Gram-positive bacteria. Applied and Environmental Microbiology, 70, 6887–6891. Bisicchia P, Lioliou E, Noone D, Salzberg L I, Botella E, Hubner S, Devine K M. 2010. Peptidoglycan metabolism is controlled by the WalRK (YycFG) and PhoPR two-component systems in phosphate-limited Bacillus subtilis cells. Molecular Microbiology, 75, 972–989. Blencke H, Homuth G, Ludwig H, Mader U, Hecker M, Stulke J. 2003. Transcriptional profiling of gene expression in response to glucose in Bacillus subtilis: Regulation of the central metabolic pathways. Metabolic Engineering, 5, 133–149. Botella E, Hubner S, Hokamp K, Hansen A, Bisicchia P, Noone D, Powell L, Salzberg L I, Devine K M. 2011. Cell envelope gene expression in phosphate-limited Bacillus subtilis cells. Microbiology, 157, 2470–2484. Chitarra G S, Breeuwer P, Nout M J R, Van Aelst A C, Rombouts F M, Tjakko A. 2003. An antifungal compound produced by Bacillus subtilis YM 10–20 inhibits germination of Penicillium roqueforti conidiospores. Journal of Applied Microbiology, 94, 159–166. Cleveland C C, Townsend A R, Schmidt S K. 2002. Phosphorus limitation of microbial processes in moist tropical forests: Evidence from short-term laboratory incubations and field studies. Ecosystems, 5, 680–691. Dong W, Li S, Lu X, Zhang X, Wang P, Ma P, Guo Q. 2014. Regulation of fengycin biosynthase by regulator PhoP in the Bacillus subtilis strain NCD-2. Acta Phytopathology Sinica, 44, 180–187. (in Chinese)Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, Wang Y, Ma P. 2014. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiological Research, 169, 533–540. Guo Q, Li S, Lu X, Li B, Ma P. 2010. PhoR/PhoP two component regulatory system affects biocontrol capability of Bacillus subtilis NCD-2. Genetics and Molecular Biology, 33, 333–340. Guo Q, Wu Y, Li S, Lu X, Wang H, Ma P. 2013. Functional analysis of ywbB to the biofilm formation and root colonization in Bacillus subtilis strain NCD-2. Acta Phytophylacica Sinica, 40, 45–50. (in Chinese)Jacques P. 2011. Surfactin and other lipopeptides from Bacillus spp. In: Biosurfactants. Springer, Berlin, Heidelberg. pp. 57–91.Kraas F I, Helmetag V, Wittmann M, Strieker M, Marahiel M A. 2010. Functional dissection of surfactin synthetase initiation module reveals insights into the mechanism of lipoinitiation. Chemistry & Biology, 17, 872–880. Li B, Lu X, Guo Q, Qian C, Li S, Ma P. 2010. Isolation and identification of lipopeptides and volatile compounds produced by Bacillus subtilis strain BAB-1. Scientia Agricultura Sinica, 43, 3547–3554. (in Chinese)Li S, Lu X, Ma P, Gao S, Liu X, Liu G. 2005. Evaluation of biocontrol potential of a bacterial strain NCD-2 against cotton Verticillium wilt in field trials. Acta Phytopathologica Sinica, 35, 451–455. (in Chinese)Liu W, Hulett F M. 1998. Comparison of PhoP binding to the tuaA promoter with PhoP binding to other Pho-regulon promoters establishes a Bacillus subtilis Pho core binding site. Microbiology, 144, 1443–1450. Martin J F, Liras P. 2010. Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Current Opinion in Microbiology, 13, 263–273. Martin P, Lohr J, Dean D. 1981. Transformation of Bacillus thuringiensis protoplasts by plasmid deoxyribonucleic acid. Journal of Bacteriology, 145, 980–983. Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny J L, Thonart P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 9, 1084–1090. Pragai Z, Harwood C R. 2002. Regulatory interactions between the Pho and sigma (B)-dependent general stress regulons of Bacillus subtilis. Microbiology, 148, 1593–1602. Ramachandran V K. 2008. Microarray Analysis of Rhizobium leguminosarum bv. Viciae 3841 Colonization of the Rhizosphere. University of Reading, United Kingdom.Rebib H, Hedi A, Rousset M, Boudabous A, Limam F, Sadfi-Zouaoui N. 2012. Biological control of Fusarium foot rot of wheat using fengycin-producing Bacillus subtilis isolated from salty soil. African Journal of Biotechnology, 11, 8464–8475. Sambrook J, Russell D W. 2001. Molecular Cloning: A Laboratory Manual. vol. 1–3. Cold Spring Harbor, Cold Spring Harbor Laboratory Press, New York.Tao Y, Bie X, Lv F, Zhao H, Lu Z. 2011. Antifungal activity and mechanism of fengycin in the presence and absence of commercial surfactin against Rhizopus stolonifer. The Journal of Microbiology, 49, 146–150. Vanittanakom N, Loeffler W, Koch U, Jung G. 1986. Fengycin - A novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. The Journal of Antibiotics, 39, 888–901. Wan J K, Chang B Y, Lin T P, Liu S T. 2009. Activation of the promoter of fengycin synthetase operon by the UP element. Journal of Bacteriology, 191, 4615–4623.Wang P, Guo Q, Ma Y, Li S, Lu X, Zhang X, Ma P. 2015. DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2. Microbiological Research, 178, 42–50.Wang T, Liang Y, Wu M, Chen Z, Lin J, Yang L. 2015. Natural products from Bacillus subtilis with antimicrobial properties. Chinese Journal of Chemical Engineering, 23, 744–754. (in Chiense)Yanez-Mendizabal V, Zeriouh H, Vinas I, Torres R, Usall J, de Vicente A, Perez-Garcia A, Teixido N. 2012. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. European Journal of Plant Pathology, 132, 609–619. Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology, 91, 181–187. |